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“For if each Star is little more a mathematical Point, located upon
the Hemisphere of Heaven by Right Ascension and Declination, then
all the Stars, taken together, tho’ innumerable, must like any other
set of points, in turn represent some single gigantick Equation, to the
mind of God as straightforward as, say, the Equation of a Sphere,—to
us unreadable, incalculable. A lonely, uncompensated, perhaps even
impossible Task,—yet some of us must ever be seeking, I suppose.”

—Thomas Pynchon, Mason & Dixon






Preface

General relativity is the most beautiful physical theory ever invented. It describes
one of the most pervasive features of the world we experience—gravitation—in
terms of an elegant mathematical structure—the differential geometry of curved
spacetime—Ieading to unambiguous predictions that have received spectacular
experimental confirmation. Consequences of general relativity, from the big bang
to black holes, often get young people first interested in physics, and it is an unal-
loyed joy to finally reach the point in one’s studies where these phenomena may
be understood at a rigorous quantitative level. If you are contemplating reading
this book, that point is here.

In recent decades, general relativity (GR) has become an integral and indis-
pensable part of modern physics. For a long time after it was proposed by Einstein
in 1916, GR was counted as a shining achievement that lay somewhat outside the
mainstream of interesting research. Increasingly, however, contemporary students
in a variety of specialties are finding it necessary to study Einstein’s theory. In ad-
dition to being an active research area in its own right, GR is part of the standard
syllabus for anyone interested in astrophysics, cosmology, string theory, and even
particle physics. This is not to slight the more pragmatic uses of GR, including
the workings of the Global Positioning System (GPS) satellite network.

There is no shortage of books on GR, and many of them are excellent. Indeed,
approximately thirty years ago witnessed the appearance of no fewer than three
books in the subject, each of which has become a classic in its own right: those by
Weinberg (1972), Misner, Thorne, and Wheeler (1973), and Hawking and Ellis
(1975). Each of these books is suffused with a strongly-held point of view advo-
cated by the authors. This has led to a love-hate relationship between these works
and their readers; in each case, it takes little effort to find students who will de-
clare them to be the best textbook ever written, or other students who find them
completely unpalatable. For the individuals in question, these judgments may very
well be correct; there are many different ways to approach this subject.

The present book has a single purpose: to provide a clear introduction to gen-
eral relativity, suitable for graduate students or advanced undergraduates. I have
attempted to include enough material so that almost any one-semester introduc-
tory course on GR can find the appropriate subjects covered in the text, but not
too much more than that. In particular, I have tried to resist the temptation to write
a comprehensive reference book. The only goal of this book is to teach you GR.

An intentional effort has been made to prefer the conventional over the id-
iosyncratic. If I can be accused of any particular ideological bias, it would be a
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tendency to think of general relativity as a field theory, a point of view that helps
one to appreciate the connections among GR, particle physics, and string theory.
At the same time, there are a number of exciting astrophysical applications of GR
(black holes, gravitational lensing, the production and detection of gravitational
waves, the early universe, the late universe, the cosmological constant), and I
have endeavored to include at least enough background discussion of these issues
to prepare students to tackle the current literature.

The primary question facing any introductory treatment of general relativity is
the level of mathematical rigor at which to operate. There is no uniquely proper
solution, as different students will respond with different levels of understanding
and enthusiasm to different approaches. Recognizing this, I have tried to pro-
vide something for everyone. I have not shied away from detailed formalism, but
have also attempted to include concrete examples and informal discussion of the
concepts under consideration. Much of the most mathematical material has been
relegated to the Appendices. Some of the material in the Appendices is actually an
integral part of the course (for example, the discussion of conformal diagrams),
but an individual reader or instructor can decide just when it is appropriate to
delve into them,; signposts are included in the body of the text.

Surprisingly, there are very few formal prerequisites for learning general rel-
ativity; most of the material is developed as we go along. Certainly no prior ex-
posure to Riemannian geometry is assumed, nor would it necessarily be helpful.
It would be nice to have already studied some special relativity; although a dis-
cussion is included in Chapter 1, its purpose is more to review the basics and and
introduce some notation, rather than to provide a self-contained introduction. Be-
yond that, some exposure to electromagnetism, Lagrangian mechanics, and linear
algebra might be useful, but the essentials are included here.

The structure of the book should be clear. The first chapter is a review of spe-
cial relativity and basic tensor algebra, including a brief discussion of classical
field theory. The next two chapters introduce manifolds and curvature in some
detail; some motivational physics is included, but building a mathematical frame-
work is the primary goal. General relativity proper is introduced in Chapter 4,
along with some discussion of alternative theories. The next four chapters dis-
cuss the three major applications of GR: black holes (two chapters), perturbation
theory and gravitational waves, and cosmology. Each of these subjects has wit-
nessed an explosion of research in recent years, so the discussions here will be
necessarily introductory, but I have tried to emphasize issues of relevance to cur-
rent work. These three applications can be covered in any order, although there
are interdependencies highlighted in the text. Discussions of experimental tests
are sprinkled through these chapters. Chapter 9 is a brief introduction to quan-
tum field theory in curved spacetime; this is not a necessary part of a first look
at GR, but has become increasingly important to work in quantum gravity and
cosmology, and therefore deserves some mention. On the other hand, a few topics
are scandalously neglected; the initial-value problem and cosmological perturba-
tion theory come to mind, but there are others. Fortunately there is no shortage of
other resources. The Appendices serve various purposes: There are discussions of
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technical points that were avoided in the body of the book, crucial concepts that
could have been put in various places, and extra topics that are useful but outside
the main development.

Since the goal of the book is pedagogy rather than originality, I have often
leaned heavily on other books (listed in the bibliography) when their expositions
seemed perfectly sensible to me. When this leaning was especially heavy, I have
indicated it in the text itself. It will be clear that a primary resource was the book
by Wald (1984), which has become a standard reference in the field; readers of
this book will hopefully be well-prepared to jump into the more advanced sections
of Wald’s book.

This book grew out of a set of lecture notes that were prepared when I taught
a course on GR at MIT. These notes are available on the web for free, and will
continue to be so; they will be linked to the website listed below. Perhaps a little
over half of the material here is contained in the notes, although the advantages
of owning the book (several copies, even) should go without saying.

Countless people have contributed greatly both to my own understanding of
general relativity and to this book in particular—too many to acknowledge with
any hope of completeness. Some people, however, deserve special mention. Ted
Pyne learned the subject along with me, taught me a great deal, and collaborated
with me the first time we taught a GR course, as a seminar in the astronomy
department at Harvard; parts of this book are based on our mutual notes. Nick
Warner taught the course at MIT from which I first learned GR, and his lectures
were certainly a very heavy influence on what appears here. Neil Cornish was
kind enough to provide a wealth of exercises, many of which have been included
at the end of each chapter. And among the many people who have read parts of
the manuscript and offered suggestions, Sanaz Arkani-Hamed was kind enough
to go through the entire thing in great detail.

I would also like to thank everyone who either commented in person or by
email on different parts of the book; these include Tigran Aivazian, Teodora Be-
loreshka, Ed Bertschinger, Patrick Brady, Peter Brown, Jennifer Chen, Michele
Ferraz Figueird, Eanna Flanagan, Jacques Fric, Ygor Geurts, Marco Godina,
Monica Guica, Jim Hartle, Tamas Hauer, Daniel Holz, Ted Jacobson, Akash
Kansagra, Chuck Keeton, Arthur Kosowsky, Eugene Lim, Jorma Louko, Robert
A. McNees, Hayri Mutluay, Simon Ross, Itai Seggev, Robert Wald, and Barton
Zwiebach. Apologies are due to anyone I may have neglected to mention. And
along the way I was fortunate to be the recipient of wisdom and perspective from
numerous people, including Shadi Bartsch, George Field, Deryn Fogg, Ilana Har-
rus, Gretchen Helfrich, Mari Ruti, Maria Spiropulu, Mark Trodden, and of course
my family. (This wisdom often came in the form, “What were you thinking?”’)
Finally, I would like to thank the students in my GR classes, on whom the strate-
gies deployed here were first tested, and express my gratitude to my students and
collaborators, for excusing my book-related absences when I should have been
doing research.

My friends who have written textbooks themselves tell me that the first printing
of a book will sometimes contain mistakes. In the unlikely event that this happens
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here, there will be a list of errata kept at the website for the book:
http://spacetimeandgeometry.net/

The website will also contain other relevant links of interest to readers.

During the time I was working on this book, I was supported by the National
Science Foundation, the Department of Energy, the Alfred P. Sloan Foundation,
and the David and Lucile Packard Foundation.

Sean Carroll
Chicago, Illinois
June 2003




1 B Special Relativity and Flat Spacetime

11
1.2
13
14
15
1.6
1.7
1.8
1.9
1.10
1.11

Contents

Prelude 1

Space and Time, Separately and Together

Lorentz Transformations 12
Vectors 15

Dual Vectors (One-Forms) 18
Tensors 21

Manipulating Tensors 25
Maxwell’s Equations 29
Energy and Momentum 30
Classical Field Theory 37
Exercises 45

2 B Manifolds

2.1
22
23
24
25
2.6
2.7
2.8
2.9
2.10
211

Gravity as Geometry 48
What Is a Manifold? 54
Vectors Again 63
Tensors Again 68

The Metric 71

An Expanding Universe 76
Causality 78

Tensor Densities 82
Differential Forms 84
Integration 88
Exercises 90

3 B Curvature

3.1
32
33

Overview 93
Covariant Derivatives 94
Parallel Transport and Geodesics

102

3

48

93

xi



xii

Contents

3.4
3.5
3.6
3.7
3.8
3.9

Properties of Geodesics 108

The Expanding Universe Revisited 113
The Riemann Curvature Tensor 121
Properties of the Riemann Tensor 126
Symmetries and Killing Vectors 133
Maximally Symmetric Spaces 139

3.10 Geodesic Deviation 144
3.11 Exercises 146

4 M Gravitation

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9

Physics in Curved Spacetime 151
Einstein’s Equation 155

Lagrangian Formulation 159

Properties of Einstein’s Equation 165
The Cosmological Constant 171

Energy Conditions 174

The Equivalence Principle Revisited 177
Alternative Theories 181

Exercises 190

5 M The Schwarzschild Solution

5.1
52
53
54
55
5.6
57
5.8
59

The Schwarzschild Metric 193

Birkhoff’s Theorem 197

Singularities 204

Geodesics of Schwarzschild 205

Experimental Tests 212

Schwarzschild Black Holes 218

The Maximally Extended Schwarzschild Solution 222
Stars and Black Holes 229

Exercises 236

6 B More General Black Holes

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

The Black Hole Zoo 238

Event Horizons 239

Killing Horizons 244

Mass, Charge, and Spin 248

Charged (Reissner—Nordstrém) Black Holes 254
Rotating (Kerr) Black Holes 261

The Penrose Process and Black-Hole Thermodynamics
Exercises 272

267

151

193

238




Contents

7 B Perturbation Theory and Gravitational Radiation

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

Linearized Gravity and Gauge Transformations 274
Degrees of Freedom 279

Newtonian Fields and Photon Trajectories 286
Gravitational Wave Solutions 293

Production of Gravitational Waves 300

Energy Loss Due to Gravitational Radiation 307
Detection of Gravitational Waves 315

Exercises 320

8 B Cosmology

8.1
82
83
8.4
8.5
8.6
8.7
8.8
89

Maximally Symmetric Universes 323
Robertson—Walker Metrics 329

The Friedmann Equation 333
Evolution of the Scale Factor 338
Redshifts and Distances 344
Gravitational Lensing 349

Our Universe 355

Inflation 365

Exercises 374

9 B Quantum Field Theory in Curved Spacetime

9.1 Introduction 376

9.2  Quantum Mechanics 378

9.3 Quantum Field Theory in Flat Spacetime 385

9.4  Quantum Field Theory in Curved Spacetime 394

9.5  The Unruh Effect 402

9.6  The Hawking Effect and Black Hole Evaporation 412
APPENDIXES

A B Maps between Manifolds

B B Diffeomorphisms and Lie Derivatives

C H Submanifolds

D B Hypersurfaces

xiii

274

323

376

423

423

429

439

443



Xiv Contents

E W Stokes’s Theorem
F B Geodesic Congruences
G B Conformal Transformations
H B Conformal Diagrams
| B The Parallel Propagator
) @ Noncoordinate Bases
Bibliography

Index

453

459

467

471

479

483

495

501




CHAPTER

Special Relativity and
Flat Spacetime

1.1 ® PRELUDE

General relativity (GR) is Einstein’s theory of space, time, and gravitation. At
heart it is a very simple subject (compared, for example, to anything involving
quantum mechanics). The essential idea is perfectly straightforward: while most
forces of nature are represented by fields defined on spacetime (such as the elec-
tromagnetic field, or the short-range fields characteristic of subnuclear forces),
gravity is inherent in spacetime itself. In particular, what we experience as “grav-
ity” is a manifestation of the curvature of spacetime.

Our task, then, is clear. We need to understand spacetime, we need to un-
derstand curvature, and we need to understand how curvature becomes gravity.
Roughly, the first two chapters of this book are devoted to an exploration of space-
time, the third is about curvature, and the fourth explains the relationship between
curvature and gravity, before we get into applications of the theory. However, let’s
indulge ourselves with a short preview of what is to come, which will perhaps mo-
tivate the initial steps of our journey.

GR is a theory of gravity, so we can begin by remembering our previous theory
of gravity, that of Newton. There are two basic elements: an equation for the
gravitational field as influenced by matter, and an equation for the response of
matter to this field. The conventional Newtonian statement of these rules is in
terms of forces between particles; the force between two objects of masses M and
m separated by a vector r = re) is the famous inverse-square law,

GMm

F= ) €, (1.1)

and this force acts on a particle of mass m to give it an acceleration according to
Newton’s second law,

F = ma. (1.2)

Equivalently, we could use the language of the gravitational potential ®; the po-
tential is related to the mass density p by Poisson’s equation,

V2d = 47 Gp, (1.3)

and the acceleration is given by the gradient of the potential,
a=Vo. (1.4)
1



Chapter 1 Special Relativity and Flat Spacetime

Either (1.1) and (1.2), or (1.3) and (1.4), serve to define Newtonian gravity. To
define GR, we need to replace each of them by statements about the curvature of
spacetime.

The hard part is the equation governing the response of spacetime curvature to
the presence of matter and energy. We will eventually find what we want in the
form of Einstein’s equation,

Ruy — 5Rgyy = 87 GT,. (1.5)

This looks more forbidding than it should, largely because of those Greek sub-
scripts. In fact this is simply an equation between 4 x 4 matrices, and the subscripts
label elements of each matrix. The expression on the left-hand side is a measure
of the curvature of spacetime, while the right-hand side measures the energy and
momentum of matter, so this equation relates energy to curvature, as promised.
But we will defer until later a detailed understanding of the inner workings of
Einstein’s equation.

The response of matter to spacetime curvature is somewhat easier to grasp:
Free particles move along paths of “shortest possible distance,” or geodesics. In
other words, particles try their best to move on straight lines, but in a curved
spacetime there might not be any straight lines (in the sense we are familiar with
from Euclidean geometry), so they do the next best thing. Their parameterized
paths x#()) obey the geodesic equation:

d2xh u dx? dx°

—_— ——=0. 1.6
di? 1o dr di (1.6)

At this point you aren’t expected to understand (1.6) any more than (1.5); but soon
enough it will all make sense.

As we will discuss later, the universal nature of geodesic motion is an ex-
tremely profound feature of GR. This universality is the origin of our claim that
gravity is not actually a “force,” but a feature of spacetime. A charged particle in
an electric field feels an acceleration, which defiects it from straight-line motion;
in contrast, a particle in a gravitational field moves along a path that is the closest
thing there is to a straight line. Such particles do not feel acceleration; they are
freely falling. Once we become more familiar with the spirit of GR, it will make
perfect sense to think of a ball flying through the air as being more truly “unaccel-
erated” than one sitting on a table; the one sitting a table is being deflected away
from the geodesic it would like to be on (which is why we feel a force on our feet
as we stand on Earth).

The basic concept underlying our description of spacetime curvature will be
that of the metric tensor, typically denoted by g,,. The metric encodes the ge-
ometry of a space by expressing deviations from Pythagoras’s theorem, (Al)? =
(Ax)? + (Ay)? (where Al is the distance between two points defined on a Carte-
sian grid with coordinate separations Ax and Ay). This familiar formula is valid
only in conventional Euclidean geometry, where it is implicitly assumed that
space is flat. In the presence of curvature our deeply ingrained notions of ge-
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ometry will begin to fail, and we can characterize the amount of curvature by
keeping track of how Pythagoras’s relation is altered. This information is con-
tained in the metric tensor. From the metric we will derive the Riemann curvature
tensor, used to define Einstein’s equation, and also the geodesic equation. Setting
up this mathematical apparatus is the subject of the next several chapters.

Despite the need to introduce a certain amount of formalism to discuss curva-
ture in a quantitative way, the essential notion of GR (“gravity is the curvature
of spacetime”) is quite simple. So why does GR have, at least in some benighted
circles, a reputation for difficulty or even abstruseness? Because the elegant truths
of Einstein’s theory are obscured by the accumulation of certain pre-relativity no-
tions which, although very useful, must first be discarded in order to appreciate
the world according to GR. Specifically, we live in a world in which spacetime
curvature is very small, and particles are for the most part moving quite slowly
compared to the speed of light. Consequently, the mechanics of Galileo and New-
ton comes very naturally to us, even though it is only an approximation to the
deeper story.

So we will set about learning the deeper story by gradually stripping away the
layers of useful but misleading Newtonian intuition. The first step, which is the
subject of this chapter, will be to explore special relativity (SR), the theory of
spacetime in the absence of gravity (curvature). Hopefully this is mostly review,
as it will proceed somewhat rapidly. The point will be both to recall what SR is all
about, and to introduce tensors and related concepts that will be crucial later on,
without the extra complications of curvature on top of everything else. Therefore,
for this chapter we will always be working in flat spacetime, and furthermore we
will only use inertial (Cartesian-like) coordinates. Needless to say it is possible
to do SR in any coordinate system you like, but it turns out that introducing the
necessary tools for doing so would take us halfway to curved spaces anyway, so
we will put that off for a while.

SPACE AND TIME, SEPARATELY AND TOGETHER

A purely cold-blooded approach to GR would reverse the order of Chapter 2
(Manifolds) and Chapter 1 (Special Relativity and Flat Spacetime). A manifold
is the kind of mathematical structure used to describe spacetime, while special
relativity is a model that invokes a particular kind of spacetime (one with no cur-
vature, and hence no gravity). However, if you are reading this book you presum-
ably have at least some familiarity with special relativity (SR), while you may
not know anything about manifolds. So our first step will be to explore the rela-
tively familiar territory of SR, taking advantage of this opportunity to introduce
concepts and notation that will be crucial to later developments.

Special relativity is a theory of the structure of spacetime, the background on
which particles and fields evolve. SR serves as a replacement for Newtonian me-
chanics, which also is a theory of the structure of spacetime. In either case, we can
distinguish between this basic structure and the various dynamical laws govern-




Chapter 1 Special Relativity and Flat Spacetime

particle worldline———

-

space at a fixed time

FIGURE 1.1 In Newtonian spacetime there is an absolute slicing into distinct copies of
space at different moments in time. Particle worldlines are constrained to move forward
in time, but can travel through space at any velocity; there is universal agreement on the
question of whether two events at different points in space occur at the same moment of
time.

ing specific systems: Newtonian gravity is an example of a dynamical system set
within the context of Newtonian mechanics, while Maxwell’s electromagnetism
is a dynamical system operating within the context of special relativity.

Spacetime is a four-dimensional set, with elements labeled by three dimen-
sions of space and one of time. (We’ll do a more rigorous job with the definitions
in the next chapter.) An individual point in spacetime is called an event. The path
of a particle is a curve through spacetime, a parameterized one-dimensional set of
events, called the worldline. Such a description applies equally to SR and New-
tonian mechanics. In either case, it seems clear that “time” is treated somewhat
differently than “space”; in particular, particles always travel forward in time,
whereas they are free to move back and forth in space.

There is an important difference, however, between the set of allowed paths
that particles can take in SR and those in Newton’s theory. In Newtonian mechan-
ics, there is a basic division of spacetime into well-defined slices of “all of space
at a fixed moment in time.” The notion of simultaneity, when two events occur at
the same time, is unambiguously defined. Trajectories of particles will move ever
forward in time, but are otherwise unconstrained; in particular, there is no limit
on the relative velocity of two such particles.

In SR the situation is dramatically altered: in particular, there is no well-defined
notion of two separated events occurring “at the same time.” That is not to say that
spacetime is completely structureless. Rather, at any event we can define a light
cone, which is the locus of paths through spacetime that could conceivably be
taken by light rays passing through this event. The absolute division, in Newtonian
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particle worldline————

light cones

FIGURE 1.2 In special relativity there is no absolute notion of “all of space at one mo-
ment in time.” Instead, there is a rule that particles always travel at less than or equal to the
speed of light. We can therefore define light cones at every event, which locally describe
the set of allowed trajectories. For two events that are outside each others’ light cones,
there is no universal notion of which event occurred earlier in time.

mechanics, of spacetime into unique slices of space parameterized by time, is
replaced by a rule that says that physical particles cannot travel faster than light,
and consequently move along paths that always remain inside these light cones.

The absence of a preferred time-slicing in SR is at the heart of why the notion
of spacetime is more fundamental in this context than in Newtonian mechanics.
Of course we can choose specific coordinate systems in spacetime, and once we
do, it makes sense to speak of separated events occurring at the same value of
the time coordinate in this particular system; but there will also be other possible
coordinates, related to the first by “rotating” space and time into each other. This
phenomenon is a natural generalization of rotations in Euclidean geometry, to
which we now turn.

Consider a garden-variety two-dimensional plane. It is typically convenient
to label the points on such a plane by introducing coordinates, for example by
defining orthogonal x and y axes and projecting each point onto these axes in the
usual way. However, it is clear that most of the interesting geometrical facts about
the plane are independent of our choice of coordinates; there aren’t any preferred
directions. As a simple example, we can consider the distance between two points,
given by

(As)? = (Ax)? + (Ay)>. 1.7

In a different Cartesian coordinate system, defined by x’ and y’ axes that are
rotated with respect to the originals, the formula for the distance is unaltered:

(As5)? = (Ax)? + (AY)2. (1.8)

We therefore say that the distance is invariant under such changes of coordinates.























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































