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Preface

"Sie bedeutet einen wahren Triumph der durch Gauss,
Riemann, Christoffel, Ricci ... begrundeten Methoden des
allgemeinen Differentialcalculus." ALBERT EINSTEIN, 1915

SINCE ITS DEVELOPMENT BY Ricci between 1887 and 1896, tensor analysis has
had a rather restricted outlook despite its striking success as a mathematical
tool in the general theory of relativity and its adaptability to a wide range of
problems in differential equations, geometry, and physics. The emphasis has
been on notation and manipulation of indices. This book is an attempt to
broaden this point of view at the stage where the student first encounters the
subject. We have treated tensor analysis as a continuation of advanced calcu-
lus, and our standards of rigor and logical completeness compare favorably
with parallel courses in the curriculum such as complex variable theory and
linear algebra.

For students in the physical sciences, who acquire mathematical knowledge
on a "need-to-know" basis, this book provides organization. On the other
hand, it can be used by mathematics students as a meaningful introduction to
differential geometry.

A broad range of notations is explained and interrelated, so the student will
be able to continue his studies among either the classical references, those in
the style of E. Cartan, or the current abstractions.

The material has been organized according to the dictates of mathematical
structure, proceeding from the general to the special. The initial chapter has
been numbered 0 because it logically precedes the main topics. Thus Chapter 0
establishes notation and gives an outline of a body of theory required to put
the remaining chapters on a sound and logical footing. It is intended to be a
handy reference but not for systematic study in a course. Chapters I and 2 are
independent of each other, representing a division of tensor analysis into its
function-theoretical and algebraic aspects, respectively. This material is com-
bined and developed in several ways in Chapters 3 and 4, without specializa-
tion of mathematical structure. In the last two chapters (5 and 6) several
important special structures are studied, those in Chapter 6 illustrating how
the previous material can be adapted to clarify the ideas of classical mechanics.

Advanced calculus and elementary differential equations are the minimum
background necessary for the study of this book. The topics in advanced calculus
which,are essential are the theory of functions of several variables, the implicit
function theorem, and (for Chapter 4) multiple integrals. An understanding
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iv Preface

of what it means for solutions of systems of differential equations to
exist and be unique is more important than an ability to crank out general
solutions. Thus we would not expect that a student in the physical sciences
would be ready for a course based on this book until his senior year. Mathe-
matics students intent on graduate study might use this material as early as
their junior year, but we suggest that they would find it more fruitful and make
faster progress if they wait until they have had a course in linear algebra and
matrix theory. Other courses helpful in speeding the digestion of this material
are those in real variable theory and topology.

The problems are frequently important to the development of the text.
Other problems are devices to enforce the understanding of a definition or a
theorem. They also have been used to insert additional topics not discussed in
the text.

We advocate eliminating many of the parentheses customarily used in
denoting function values. That is, we often writefx instead off(x).

The end of a proof will be denoted by the symbol 1.
We wish to thank Professor Louis N. Howard of MIT for his critical

reading and many helpful suggestions; W. C. Weber for critical reading, useful
suggestions, and other editorial assistance; E. M. Moskal and D. E. Blair for
proofreading parts of the manuscript; and the editors of The Macmillan
Company for their cooperation and patience.

Suggestions for the Reader

The bulk of this material can be covered in a two-semester (or three-
quarter) course. Thus one could omit Chapter 0 and several sections of the
later chapters, as follows: 2.14, 2.22, 2.23, 3.8, 3.10, 3.11, 3.12, the Appendix
in Chapter 3, 4.4, 4.5, 4.10, 5.6, and all of Chapter 6. If it is desired to cover
Chapter 6, Sections 2.23 and 4.4 and Appendix 3A should be studied. For a
one-semester course one should try to get through most of Chapters 1 and 2
and half of Chapter 3. A thorough study of Chapter 2 would make a reason-
able course in linear algebra, so that for students who have had linear algebra
the time on Chapter 2 could be considerably shortened. In a slightly longer
course, say two quarters, it is desirable to cover Chapter 3, Sections 4.1, 4.2,
and 4.3, and most of the rest of Chapter 4 or all of Chapter 5. The choice of
either is possible because Chapter 5 does not depend on Sections 4.4 through
4.10. The parts in smaller print are more difficult or tangential, so they may
be considered as supplemental reading.

R. L. B.

S.LG.
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CHAPTER o
Set Theory and Topology

0.1. SET THEORY

Since we cannot hope to convey the significance of set theory, it is mostly for
the sake of logical completeness and to fix our notation that we give the
definitions and deduce the facts that follow.

0.1.1. Sets

Set theory is concerned with abstract objects and their relation to various
collections which contain them. We do not define what a set is but accept it as
a primitive notion. We gain an intuitive feeling for the meaning of sets and,
consequently, an idea of their usage from merely listing some of the synonyms:
class, collection, conglomeration, bunch, aggregate. Similarly, the notion of an
object is primitive, with synonyms element and point. Finally, the relation
between elements and sets, the idea of an element being in a set, is primitive.
We use a special symbol to indicate this relation, c, which is read "is an
element of." The negation is written 0, read "is not an element of."

As with all modern mathematics, once the primitive terms have been
specified, axioms regarding their usage can be specified, so the set theory can
be developed as a sequence of theorems and definitions. (For example, this is
done in an appendix to J. Kelly, General Topology, Van Nostrand, Princeton,
N.J., 1955.) However, the axioms are either very transparent intuitively or
highly technical, so we shall use the naive approach of dependence on intui-
tion, since it is quite natural (deceptively so) and customary.

We do not exclude the possibility that sets are elements of other sets. Thus
we may have x e A and A E T, which we interpret as saying that A and T are
sets, x and A are elements, and that x belongs to A and A belongs to T. It may
also be that x belongs to the set B, that x is itself a set, and that T is an element

I



2 SET THEORY AND TOPOLOGY [Ch.O

of some set. In fact, in formal set theory no distinction is made between sets
and elements.

We specify a set by placing all its elements or a typical element and the
condition which defines "typical" within braces, { }. In the latter case we
separate the typical element from the condition by a vertical 1. For example, the
set having the first three odd natural numbers as its only elements is {1, 3, 5}.
If Z is the set of all integers, then the set of odd integers is {x I there is n E Z
such that x = 2n + 1}, or, more simply, {x I x = 2n + 1, n cZ} or
{2n+ 1 I neZ}.

Set A is a subset of set B if every element of A is also an element of B. The
relation is written A c B or B A, which can also be read "A is contained
in B" or "B contains A." Although the word "contain" is used for both "e"
and " (=," the meaning is different in each case, and which is meant can be
determined from the context. To make matters worse, frequently an element x
and the single-element set {x} (called singleton x) are not distinguished, which
destroys the distinction (notationally) between "x c x," which is always
true, and "x e x," which is usually false.

The sets A and B are equal, written A = B, if and only if A - B and B - A.
We shall abbreviate the phrase "if and only if" as "iff."

0.1.2. Set Operations

For two sets A and B, the intersection of A and B, A n B, read "A intersect
B," is the set consisting of those elements which belong to both A and B. The
union of A and B, A U B, consists of those elements which belong to A or B (or
both). The operations of union and intersection are easily described in terms
of the notation given above:

Note that the use of "or" in mathematics is invariably inclusive, so that "or
both" is not needed.

It is sometimes convenient to use the generalization of the operations of
union and intersection to more than two sets. To include the infinite cases we
start with a collection of sets which are labeled with subscripts ("indexed")
from an index set J. Thus the collection of sets which we wish to unite or
intersect has the form {A, I a c J}. The two acceptable notations in each case,
with the first the more usual, are

(l Aa = n (A. a e J}, the general intersection,
aeJ

U Aa = U (Aa I a eJ}, the general union.
a6J
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Frequently J will be finite, for example, the first n positive integers, in which
case we shall use one of the following forms:

n

n A4=A,nA2n... nAn,

and similarly for union,

n
U At = Al v A2 U ... LAn.

In order that the intersection of sets be a set even when they have no
common elements, we introduce the empty set 0, the set which has no ele-
ments. For this and other reasons, appearing below, 0 is a useful gadget. The
empty set is a subset of every set.

The set-theoretic difference between two sets A and B is defined by
A - B = {x I x e A and x 0 B}. We do not require that B be a subset of A in
order for this difference to be formed. If A - B, then A - B is called the
complement of B with respect to A. Frequently we are concerned primarily
with a fixed set A and its subsets, in which case we shall speak of the comple-
ment of a subset, omitting the phrase "with respect to A."

Problem 0.1.2.1. The disjunctive union or symmetric difference of two sets A
and B is A A B = A U B - A n B = (A - B) U (B - A). Observe that
A A B = B A A. Prove the last equality. A distributive law is true for these
set operations: (A A B) n C = A n CA B n C. However, AAA = 0 for
every A.

0.1.3. Cartesian Products

An ordered pair is an object which consists of a pair of elements distinguished
as a first element and a second element of the ordered pair. The ordered pair
whose first element is a e A and second element is b e B is denoted (a, b). In
contrast we may also consider nonordered pairs, sets having two elements,
say a and b, which would be denoted {a, b} in accordance with what we said
above. To be called a pair we should have a b, and in any case {a, b} =
(b, a}. On the other hand, we do consider ordered pairs of the form (a, a), and
if a b, then (a, b) 0 (b, a). Indeed, (a, b) = (c, d) if a = c and b = d.

The set of ordered pairs of elements from A and B, denoted A x B,

A x B={(a,b)IaEA,beB},

is called the cartesian product of A and B.

Problem 0.1.3.1. Is A x B = B x A?
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The operation of taking Cartesian products may be iterated, in which case
certain obvious identifications are made. For example, A x (B x C) and
(A x B) x C are both considered the same as the triple cartesian product,
which is defined to be the set of triplets (3-tuples)

A X BX C={(a,b,c)I aEA,beB,ceC}.

Thus no distinction is made between ((a, b), c), (a, (b, c)), and (a, b, c). More
generally, we only use one n-fold cartesian product A, x A2 x x A.
rather than the many different ones which could be obtained by distributing
parentheses so as to take the products two at a time. If the same set is used
repeatedly, we generally use exponential notation, so A x A x A is denoted
A 3, etc.

A subset S of A x B is called a relation on A to B. An alternative notation
for (a, b) E S is aSb, which can be read "a is S-related to b," although in many
common examples it is read as it stands. For example, if A = B = R we have
the relation <, called "is less than," which formally consists of all those
ordered pairs of real numbers (x, y) such that x is less than y. A function
(see Section 0.1.4) is a special kind of relation.

Of particular importance in analysis and its special topic, tensor analysis, is
the real cartesian n-space R", where R is the set of real numbers. In the case
when n = 2 or 3 this is not quite the same as the analytic euclidean plane or
analytic euclidean space in that the word "euclidean" indicates that the
additional structure derived from a particular definition of distance is being
considered. Moreover, in euclidean space no single point or line has preference
over any other, whereas in R3 the point (0, 0, 0) and the coordinate axes are
obviously distinguishable from other points and lines in R3.

0.1.4. Functions

A function from A into B, denoted f : A -> B, is a rule which assigns to each
a c A an element fa = b e B. The idea of a "rule" is apparently a primitive
notion in this definition, but need not be, since it can be defined in terms of the
other notions previously given-"element of" and "cartesian product." This
is done by means of the graph of a function-the subset

{(a,fa) aeA)ofA x B.
The properties of a subset of A x B which are necessary and sufficient for the
subset to be the graph of a function can be given in purely set-theoretic terms
and the function itself can likewise be recaptured from its graph. In fact, it is
customary to say that the function is its graph, but we shall use the distinction
indicated by our phrasing of the definition given above.
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Synonyms for "function" are "transformation," "map," "mapping," and
"operator." Some authors use the convention that "function" is to be used
for real-valued transformations.

We shall avoid the customary parentheses unless they are required to
resolve ambiguity. Thus it is customary to write f(a) instead of fa, which we
used above. Parentheses must be used where a is itself composite; for example,
f(a + b) is not the same as fa + b. In fact, the latter is meaningless, except
that we take it conventionally to be (fa) + b, the general rule being that
operations such as addition are to be performed after evaluation of functions in
the operands.

The domain of a function f: A > B is A. The range (image, target) of
f is fA = {fa I a E Al - B. The set B is called the range set of f. An element
of the range, b = fa, is called a value off, or the image of a under f.

If fA = B, then we say that f is onto, or that f maps A onto B (in contrast to
"into" above).

If for every b E fA there is just one a c A such that b = fa, then f is said to
be one-to-one, abbreviated 1-1. In this case we can define the interse of
f, f -1: fA A, by setting f - lfa = a.

If f: A -* B and C - A, then the restriction of f to C is denoted
f lc: C--* B. It is frequently unnecessary to distinguish between f and f Ic,
since they have the same rule, but merely apply to different sets.

If C c A, then the inclusion map i,: C -*A is defined simply by ic = c.
If C = A, then is is called the identity map on C.

If f : A - . B and g: C -* D, then the composition of g and f, denoted g o f,
is the function obtained by following f by g, applied to every a e A for which
this makes sense: (g o f )a = g(fa). The domain of g -f is thus E _ {a I
a E A and fa c C). (If C n B 0, then g of is the empty function 0: a -> D.)
If g and f are defined by formulas, or sets of formulas, the formula(s) for g of
is obtained by substituting the formula(s) for f into the formula(s) for g.

For any functions, J,g,h, composition is associative; that is, (fog) o h =
.f o (g o h).

Problem 0.1.4.1. Let f : A - B. Suppose there is g: B - A such that f o g =
iR. Then j is onto, g is 1-1, It = f I yR is 1-1 onto, and g = i0B o h-'. Show by
an example that f need not be 1-1.

Problem 0.1.4.2. f: A - B is 1-1 onto if there is g: B A such that
g of = iA and f o g = iR. This characterizes g = f -1.

Examples. (a) If N is the set consisting of the first n natural numbers,
N = {z I z c- Z, 0 < z < n + 1), then Rn may be considered to be the set of
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all functions, f : N -> R. For such a function we obtain the n-tuple
(f 1, f2,..., fn), and from this it is obvious how, conversely, we get a function
from an n-tuple.

(b) The ith coordinate function u': R" -* R, also called the projection into
the ith factor, or cartesian coordinate function, is defined by u'(xl, .., x") = x'.
If we think of R" as being functions f: N-> R, then we would define u'f = fi.

(c) Using the idea of Example (a), infinite cartesian products may be
defined: If {Aa a e J} is a collection of sets, then their cartesian product is

rj A. = (f I f : J- U A. and fa e A. for every a}.
aCJ aEJ

The projections or coordinate functions, ua: fl A0 -> Aa, are defined as in
BEJ

Example (b), by setting ua f = fa. Projections are always onto.

0.1.5. Functions and Set Operations

If A is a set, we denote by YA the collection of all subsets of A, .1A =
{C I C c Al. 1A is called the power set of A.

If f : A -).. B, then we define the power map of f, f: YA -* PCB by fC =
{fc I c e C} for every C E iA. In particular, the range off may still be denoted
fA.

If f : A -> B, we also define the complete inverse image map of f, f -' : 9AB
96A, by f -1D = {a I fa e D}, for every D E9B. If f is I-1 and onto, then the
set map f -' agrees with the power map of the inverse off.

The facts to be established in the following problems show, generally, that
the inverse image map is better behaved than the power map with respect to
set operations.

Problem 0.1.5.1. The map f is onto if the inverse image map f -1 is 1-1.

Problem 0.1.5.2. (a) f-'(D1 n D2) = (f-'D1) n (f -1D2).
(b) f_'(D1 v D2) = (f -1D1) u (f -'D2)
(c) J (C1 n C2) C UC1) n (K2).
(d) f(C1 u C2) _ (fC1) u (fC2)

Problem 0.1.5.3. Find an example of f, C1, C2 such that (fC1) n (fC2) 7A
f(CI n C2)

Problem 0.1.5.4. If C c A, we define the characteristic function (Dc: A ->
{O,1 } by tca = 0 if a e A - C and (Dca = I if a e C. Denote the set of all
functions f : A -* {O, I } by 21. Show that the function (D: YA -> 2" given by
4)C = 1c is 1-1 and onto, so that IA and 2A are essentially the same.
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Problem 0.1.5.5. If A is finite, show that 2A is finite. How many elements
does 2A have?

Problem 0.1.5.6. If F: A -* 2A, define f e 2A by fa j4 (Fa)a for every a e A.
This definition off makes sense because there are only two possibilities for
(Fa)a. Show that f is not in the range of F, so that F cannot be onto. In par-
ticular, there can be no 1-1 correspondence between A and 2A. This is a precise
statement of the intuitively clear contention that 2A is "larger" than A.

A set is countable if it is either finite or its members can be arranged in an
infinite sequence; or, what is the same, there is a 1-1 map from the set into the
positive integers. The set of all integers, Z, is countable, as can be seen from
the sequence 0, 1, -1, 2, -2, 3, -3, . . The cartesian product of the positive
integers with itself is countable, as can be seen from the 1-1 map taking
(m, n) into 2"3". From this last statement it is easy to conclude that the union
of a countable collection of countable sets is countable. It can be shown that
the rational numbers are countable.

By Problem 0.1.5.6 we conclude that 2Z is not countable. A similar trick
using binary expansions of real numbers shows that the real numbers are not
countable.

0.1.6. Equivalence Relations

An equivalence relation on a set P with elements m, n, p, ..., is a relation E
which satisfies three properties:

(a) Reflexivity: For every in, mEm.
(b) Symmetry: If mEn, then nEm.
(c) Transitivity: If mEn and nEp, then mEp.
(mEn can be read "m is F.-related to n.")

For every equivalence relation there is an exhaustive partition of P into
disjoint subsets, the equivalence classes of E, for which the equivalence class
to which an arbitrary m belongs is

[m] = {n I nEm}.

From (a), (b), and (c) we have

for every m, m e [m] ;
if m c [n], then n E [m];
if m c [n] and n e [p], then m c [p];

from which it follows that

[m] = [n] if mEn.
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Conversely, if we are given an exhaustive partition of P into disjoint subsets,
we define two elements of P to be E-related if they are in the same subset, and
thus obtain an equivalence relation E for which the subsets of the partition
are the equivalence classes.

The set of equivalence classes, called the quotient, or P divided by E, is
denoted

P/E = {[m] I m E P).

0.2. TOPOLOGY

0.2.1. Topologies

We cannot expect to convey here much of the significance of topological
spaces. It is mostly for the sake of greater logical completeness that we give the
definitions and theorems that follow. An initial study of tensor analysis can
almost ignore the topological aspects since the topological assumptions are
either very natural (continuity, the Hausdorff property) or highly technical
(separability, paracompactness). However, a deeper analysis of many of the
existence problems encountered in tensor analysis requires assumption of some
of the more difficult-to-use topological properties, such as compactness and
paracompactness. For example, the existence of complete integral curves of
vector fields (Theorem 3.4.3) and existence of maxima and minima of con-
tinuous functions (Proposition 0.2.8.3) both require compactness; existence
of riemannian metrics is proved using paracompactness (Section 5.2). Finally,
we expect and hope that the extensive theory of algebraic topological invariants
(Betti numbers, etc.) will be used a great deal more in applied mathematics and
therefore we have included a few examples and remarks hinting of such uses
(cf. Morse theory in Section 3.10 and de Rham's theorem in Section 4.5).

A topology on a set X is a subset T of 9X, T c oX, such that
(a) If G,, G2 e T, then G, r G2 E T.
(b) If {Ga I a E J} C T, then U G,, E T.

ael
(c) o ETand XET.
The combination (X, T) is called a topological space. The elements of T are

called the open sets of the topological space. Frequently we shall have a specific
topology in mind and then speak of the topological space X, with T being
understood. The same space, however, can have many different topologies. In
particular, there are always the discrete topology for which T = JX and the
concrete topology for which T = {0, X}. These are so trivial as to be practi-
cally useless.
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Problem 0.2.1.1. How many distinct topologies does a finite set having two
or three points admit?

The closed sets of a topology Ton X are the complements of the members of
T, that is, the sets X - G where G e T. A topology could equally well be
defined in terms of closed sets, with axioms corresponding to those above,
which we state as theorems.

Proposition 0.2.1.1. (a) A finite union of closed sets is a closed set.
(b) An arbitrary intersection of closed sets is closed.
(c) 0 and X are closed sets.

We emphasize that closedness and openness are not negations of each other
or even contrary to each other; a set may be only closed, or only open, or
both, or neither.

If A - X, X a topological space, then the union of all open sets contained
in A is the interior of A, denoted A°. Thus A° = U {B I B - A and B e T}.
By (b), the interior of A is an open set itself, and is in fact one of the open sets
of which we take the union in its definition. It is the largest open subset of A.

Just as "open" and "closed," "union" and "intersection" are "dual"
notions, the dual notion to "interior" is "closure." The closure of A c X is
the intersection of all closed sets containing A and is denoted A-. Thus
A- = n {B A - B and X - B e T) is closed by (b), and is the smallest
closed set containing A. The following theorem shows that a complete knowl-
edge of the operations of taking the interior or the closure is adequate to
determine the topology.

Proposition 0.2.1.2. A set is open iff the interior of the set equals the set. A set
is closed iff the closure of the set equals the set.

Axioms for the closure operation, which is really a function - : YX -* ..9X,
have been formulated by Kuratowski. When they are taken as axioms, Propo-
sition 0.2.1.2 is essentially the definition of a closed set, and the axioms for
closed sets, (a), (b), (c) of Proposition 0.2.1.1 are then theorems. In our
scheme Kuratowski's axioms become theorems, as follows.

Proposition 0.2.1.3. For all subsets A, B of X:
(a) (A U B)- = A- U B-.
(b)ACA-.
(c) (A-)- = A-.
(d) 0-=R J.

Problem 0.2.1.2. Prove Proposition 0.2.1.3 and state and prove the dual
proposition for the operation of taking the interior °: 'X -. 9X.
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The boundary (also called the frontier, or the derived set) of a set A - X is
the set 8A = A - - A°. The elements of DA are called boundary points of A.
Again, it is possible to axiomati7e topology by taking b: YX --* YX as the
fundamental concept. For example, if we know all about 0, then open sets
may be defined as those G for which G r 8G = us.

A neighborhood of x c X is any A- X such that x e A°. In particular, any
open set containing x is a neighborhood of x. A basis of neighborhoods at x
is a collection of neighborhoods of x such that every neighborhood of x con-
tains one of the basis neighborhoods. In particular, the collection of all open
sets containing x is a basis of neighborhoods at x, but generally there are many
other possibilities for bases of neighborhoods. A basis of neighborhoods of X
is a specification of a basis of neighborhoods for each x e X.

Topologies are frequently defined by the specification of a basis of neigh-
borhoods. The definitive procedure is as follows.

A neighborhood of x is any set which contains a basis neighborhood of x.
An open set is then any set which is a neighborhood of every one of its points.

It is interesting that closed sets, closure, and boundary points can be
defined directly in terms of basis neighborhoods. A set G is closed if whenever
every basis neighborhood of x intersects G, then x e G. The closure of A con-
sists of those x such that every basis neighborhood of x intersects A. The
boundary of A consists of those points x such that every basis neighborhood
of x intersects both A and X - A.

0.2.2. Metric Spaces

Basis neighborhoods, and hence a topology, are frequently defined in turn by
means of a metric or distance function, which is a function d: X x X R
satisfying axioms as follows.

(a) For all r,y e X, d(x, y) > 0 (positivity).
(b) If d(x, y) = 0, then x = y (nondegeneracy).
(c) For all x, y c X, d(x, y) = d(y, x) (symmetry).
(d) For all x, y, z c X, d(x, y) + d(y, z) >_ d(x, z) (the triangle inequality).

There is no essential change if we also allow +oo as a value of d A set with
a metric function is called a metric space.

The open ball with center x and radius r > 0 with respect to d is defined as
B(x, r) = {y I d(x, y) < r}. It can then be demonstrated that such open balls
will serve as basis neighborhoods for a topology of X, the metric topology of d.
Two metrics are equivalent if they give rise to the same topology.

Two metrics d,dl: X x X-- R are strongly equivalent if there are positive
constants c,c, such that for every x,y c X, d(x, y) _< c1d1(r, y) and d,(x, y) <
cd(a, y). Strongly equivalent metrics are equivalent but not conversely. In fact,
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a metric d is always equivalent to d1 = d/(1 + d), but these two are strongly
equivalent if d is bounded; that is, there is a constant k such that d(x, y) < k
for all x,y. The metric d1 = d/(l + d) is always bounded (k = 1) whether d is
bounded or not, but a bounded metric cannot be strongly equivalent to an
unbounded one.

0.2.3. Subspaces

If A c X and X has a topology T, then we get the relative, or induced,
topology T,, by defining

T,,={Gr\AIGvT}.
It is easy to verify that T,, actually is a topology on A. When A is given this
topology, it is said to be a (topogical) subspace of X. The closed sets of a
subspace A are the intersections of closed sets of X with A.

0.2.4. Product Topologies
If X and Y are topological spaces, then we define a topology on X x Y by
specifying the basis neighborhoods of (x, y) to be G x H - X x Y, where G
is a neighborhood of x and H is a neighborhood of y. The choices for G and
H may be restricted to basis systems and there will be no difference in the
resulting topology on X x Y. When X x Y is provided with this topology it
is called the topological product of X and Y.

If X and Y are metric spaces with metrics d, d,., then we define dD, a metric
onXx Y, for every p> 1,by

d,((x, y), (x1, Yl)) = [dx(x, x1)' + d,,(Y, Yl)D]3/p

The limiting case asp --- oo is the metric d., given by

d,((x, y), (x1, y,)) = max[dx(x, x1), dr(Y, Yi)]

Although these metrics are all different, they are all strongly equivalent, so
give the same topology on X x Y; in fact, this topology is the product
topology. Indeed, the balls with respect to d. are just the products of balls
with respect to dx and dy of the same radii.

The standard topology on R is that of the metric defined by absolute value
of differences, (x, y) I x - y 1. The standard topology on Rn is obtained by
taking repeated products of the standard topology on R. It is thus the topology
of any of the metrics, for p >_ 1, x,y e Rn,

n
111

d,(x, y) = I u'x - u'Y ID 1 1/p

t=1 JI

d,(x,Y)=max[I u'x-uly i= 1,2,...,n].
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Of these, d2 is the usual euclidean metric on R°, but they are all strongly
equivalent to each other. Unless otherwise specified, we shall assume that a
topology on R" is the standard one.

Problem 0.2.4.1. (a) For fixed x,y show that dp(r, y) is a nonincreasing
function of p >_ 1. (Hint Show that the derivative is <_0.)

(b) For every x,y e R", d,(x, y) 5 nd,(x, y) and d,(v, y) = Jim dp(x, y).

(c) All d, 1 < p <_ oo, are strongly equivalent.
p+m

0.2.5. Hausdorff Spaces
A topological space X is a Hausdorff space if for every c, y c X, x y, there
are neighborhoods U, V or x, y, respectively, such that U n V = 0.

In a Hausdorff space the singleton sets {x} are closed sets.
A metric topology is always Hausdorff.

Problem 0.2.5.1. The product of Hausdorff spaces is a Hausdorff space.

0.2.6. Continuity
Let X, Y be topological spaces. A function f : X -> Y is continuous if for every
open set Gin Y, f -'G is open in X. In other words, f -': Y ->- YX maps open
sets into open sets.

Since f -' behaves well with respect to set operations and, in particular,
preserves complementation, we have immediately that f is continuous if
f-' maps closed sets into closed sets.

The above definition of continuity is the most convenient one for working
abstractly with topological spaces. For example, it is trivial to prove

Proposition 0.2.6.1. The composition of continuous functions is continuous.

However, we can recast this definition into forms which are more directly
abstractions from the e = S definition of continuity of real-valued functions
of a real variable. In that definition we first define continuity at x, and con-
tinuity itself is obtained by requiring it at every v. In the definition of con-
tinuity of f : R --> R at v, where y = fv, the e served to define a basis
neighborhood of y, given a priori, and the requirement was that there be a
basis neighborhood of x determined by S, such that f map the 8-neighborhood
into the e-neighborhood. The student should be able to show that this descrip-
tion is the essential content of the customary definition: "For every e > 0
there is a S > 0 such that for every x, for which I x - x, I < S it is true
that I frl - y I < e."
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Abstracting the description in terms of neighborhoods is not a great chore.
If f : X -. Y we say that f is continuous at x e X if for every neighborhood
V (<--> a neighborhood) of y = fx there is a neighborhood U (4--). S neighbor-
hood) of x such that U c f V (or f U c V).

The following theorem shows that our definition of a continuous function is
a correct abstraction of the usual one.

Proposition 0.2.6.2. A function f : X - Y is continuous iff f is continuous at
every x e X.

Problem 0.2.6.1. Show that all functions f : X-* X are continuous in the
discrete topology and that the only continuous functions in the concrete
topology are the constant functions.

The notion of a limit can also be abstracted. We define that lima-.xo fx = y
if for every neighborhood V of y there is a neighborhood U of xo such that
(U - {xo}) f-1 V. It follows, as usual, that f is continuous at xo if (a)
limx.,xofx = y and (b) fxo = y.

A homeomorphism f : X-* Y is a 1-1 onto function such that f and
f-1: Y--> X are both continuous. If f : X---> Y is 1-1 but not onto, then f is
said to be a homeomorphism into if f and f -1: (range f) -* X are both con-
tinuous, where range f is given the relative topology from Y. A homeomor-
phism f is also called a topological equivalence because f I Tx and f -1 J,, are
then 1-1 onto; that is, they give a 1-1 correspondence between the topologies
Tx and T, of X and Y. A property of a topological space is said to be a topo-
logical property if every homeomorphic space has the property. A topological
invariant is a rule which associates to topological spaces an object which is a
topological property of the space. The object usually consists of a number or
some algebraic system.

Problem 0.2.6.2. tan: (- 7r/2, 7r/2) - R is a homeomorphism, where tan =
sin/cos.

0.2.7. Connectedness
A topological space X is connected if the only subsets of X which are both
open and closed arc 0 and X. Another formulation of the same concept, in
terms of its negation, is

Proposition 0.2.7.1. A topological space X is not connected iff there are
nonempty open sets G, H such that G n H = o, G u H = X.

A subset A of X is connected if A with the relative topology is connected.
The following is not hard to prove.
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Proposition 0.2.7.2. (Chaining Theorem). If {A. I a e J} is a family of
connected subsets of X and (l AQ a 0, then U Aa is connected.

ad ad)

A harder theorem is the following.

Proposition 0.2.7.3. If A is connected and A C B, B c A -, then B is connected.
In particular, A - is connected.

The situation for real numbers is particularly simple. An interval (general
sense) is a subset of R of one of the forms

(a, b)={xIa<x<b},
(a,b]={xIa<x<_b),
[a, b) _ {x l a 5 x < b},
[a,b]={xa<_x5b},

where we allow a = -oo, b = oo at open ends, with obvious meanings. The
connected sets in R are precisely these intervals. In particular, R itself is
connected.

Problem 0.2.7.1. Connectedness is a topological property; that is, the image
of a connected set under a homeomorphism is connected.

Proposition 0.2.7.4. If f : X -+ Y is continuous, and A c X is connected, then
fA is connected. In particular, if Y = R, then fA is an interval. (This is a gen-
eralization of the intermediate-value theorem for continuous functions of a
real variable defined on an interval.)

In particular, if f : [a, b] - Y is continuous, the range of f is connected.
Such an f is called a continuous curve in Y from ya = fa to y, = fb.

A topological space Y is arcu'ise connected if for every y,, y, E Y there is a
continuous curve from y, to y2. It follows from Propositions 0.2.7.2 and
0.2.7.4 that an arcwise connected space is connected.

The connected component of X containing x is the union of all the connected
subsets of X which contain x. By Proposition 0.2.7.2 we see that the compo-
nent containing a is itself connected and that the components containing two
different points are either identical or do not meet Thus X is split up into a
disjoint union of connected sets, the components of X, each of which is maxi-
mal-connected, that is, is not contained in a larger connected set. It follows
from Proposition 0.2.7.3 that the components of X are closed. The number of
components is a topological invariant.

If we substitute "arcwise connected" for "connected" above, we arrive at
the notion of the are components of a topological space. The subdivision into
arc components is genera;ly finer than the subdivision into components, and
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the are components are not necessarily closed. Both these facts are illustrated
by the space A in the following example, since A is connected but has two
arc components, only one of which is closed.

Example. The subset of R2,

A= {(x, sin]/x) 1 0< x <_ 1}-

is connected but not arcwise connected. That it is connected is easy by Propo-
sition 0.2.7.3, since it is the closure of an arcwise connected set B =
{(x, sinl/x) 10 < x < 1}. However, the points on the boundary 8B =
{(0,y) -1 < y < 1) cannot be joined to those in B by a continuous curve
in A.

For the open subsets of R" the notions of connectedness and arcwise con-
nectedness coincide. Indeed, in a connected open set of Rn any two points can
bejoined by a polygonal continuous curve, that is, a continuous curve for which
the range consists of a finite number of straight-line segments.

Problem 0.2.7.2. (a) Show that if A is an open set in Rn and a e A, then the
set of points in A which can be joined to a by a polygonal continuous curve is
an open subset of A.

(b) Prove that A is polygonally connected if A is connected.

0.2.8. Compactness

If A c X, a covering of A is a family {C, I a e J} in YX such that A <z U CQ.
¢E!

An open covering is one for which the family consists of open sets. A sub-
covering of a covering {Ca l a e J} is a covering (C. I a c K), where K - J.
A finite covering is one for which J is finite.

A subset A of X is compact if every open covering of A has a finite sub-
covering.

Problem 0.2.8.1. Compactness is a topological property.

To illustrate how the definition of compactness operates, we prove that a
compact subset A of R is bounded. Consider the open covering of R con-
sisting of open intervals of length 2, {(n, n + 2) I n c Z}. Since this also is
an open covering of A, there must be a finite subcovering. Among the
(n, n + 2)'s which occur in the finite subcovering we must have one for which
n is greatest, n = n,, and one for which n is least, n = no. Then clearly
A c [no, nl + 2]. We shall see below that A is also closed (see Proposition
0.2.8.2).
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Conversely, the closed bounded subsets of R are compact, since this is only
a restatement of the Heine-Borel covering theorem. This result generalizes to
Rn-the compact subsets of R° are exactly those which are closed and
bounded. A bounded set is one which is contained in some ball with respect to
one, and hence all, of the metrics do given previously. This notion is not
related to the notion of a boundary of a set.

A dual formulation of compactness is given in terms of closed sets and finite
intersections. A family of sets {Ca j a e J} has the finite intersection property
(abbreviated FIP) if for every finite subset K of j, nacx Ca 54 sa .

Proposition 0.2.8.1. A subset A of X is compact iff for every family of rela-
tively closed subsets {Ca I a E J} of A which has the FIP, nae, Ca VI- o. (FIP
means that no finite number of complements A - C. cover A, whereas total
intersection being nonempty means that all the complements do not cover A.)

Proposition 0.2.8.2. (a) A compact subset of a Hausdorff space is closed.
(b) A closed subset in a compact space is also compact.

Proof. For part (b) note that the complement of the closed subset may be
added to any open covering of the closed subset so as to obtain an open
covering of the containing compact space. A finite subcovering of the whole
space exists and the complement of the closed subset may be deleted if it is
there, leaving a finite subcovering of the closed subset.

Suppose that A is a compact subset in a Hausdorff space X and A A A-, so
there is an x c A - - A. For every a e A there are open sets Ga, Ga such that
G. n Ga = o, a e Ga, and x e Ga, because X is Hausdorff. Then {Ga a E A}
is an open covering of A, so there is a finite subcovering {Ga I a E J}, where J
is a finite subset of A. But then naE, Ga is a neighborhood of x which does not
meet Uac, Ga A, so x cannot be in A a contradiction. I

Proposition 0.2.8.3. Let f : X -* Y be continuous and A a compact subset of X.
Then fA is compact. In particular, if Y = R, then f has a maximum and a mini-
mum on A (since fA is closed and bounded its supremum exists and is in f A); that
is, there is an am E A such that for every a e A, fa <_ faM, and similarly for a
minimum.

The proof is automatic.

Proposition 0.2.8.4. Let f : X --* Y be continuous, 1-1, and onto, where X is
compact and Y is Hausdorff. Then f is a homeomorphism. In particular, X is
Hausdorff.

Proof. The problem is to show that f -' is continuous. We do this in the
form f (closed set) is closed. But for F closed in X, F is compact [Proposition
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0.2.8.2(b)], fF is compact (Proposition 0.2.8.3), so fF is closed [Proposition
0.2.8.2(a)]. The last step uses the Hausdorff property of Y. I

0.2.9. Local Compactness
A topological space X is called locally compact if each point of X has a com-
pact neighborhood. Thus a compact space is automatically locally compact.

Problem 0.2.9.1. (a) A closed subspace of a locally compact space is locally
compact.

(b) A discrete space is locally compact.
(c) R" is locally compact.

0.2.10. Separability
A topological space X is called separable if it has a countable basis of neigh-
borhoods.

Problem 0.2.10.1. (a) Suppose that the metric space X has a countable
subset A such that A - = X. Show that the open balls with centers at points of
A and rational radii is a basis of neighborhoods for X, and hence that X is
separable.

(b) R° is separable.

Problem 0.2.10.2. The product of two separable spaces is separable.

0.2.11. Paracompactness
A family of sets U. of a topological space X is said to be locally finite if every
point of X has a neighborhood meeting only a finite number of the Ua. A
covering V,, of X is called a refinement of a covering Ua of X if for every index)3
there is at least one set U. such that Vp - Ua. A topological space X is said to
be paracompact if it is Hausdorff and if every open covering has an open
refinement which is locally finite.

Proposition 0.2.11.1. If X is a locally compact separable Hausdorff space, then
X is the union of countable family of compact subsets {A,}. This sequence of
compact subsets may be taken to be increasing; that is, At -A,, for every i.

Proof. Let {U,}, i = 1, 2, .. be an open countable basis for X. We claim
that those U, such that U; - is compact are still a basis. It suffices to show that if
a subset G is open, then for every x c- G there is a U, cz G such that U,- is
compact and x e U,. Since X is locally compact there is a compact neighbor-
hood V of x. Then V° n G is open, so there is U, - V° n G such that x E U,.
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But then U,- C V°' - V, since V is closed by Proposition 0.2.8.2, so U, is
compact by Proposition 0.2.8.2.

Discarding those U; for which U,- is not compact, we have a countable
basis whose elements have compact closures, which we again denote {U}. We
define a sequence of compact sets with the increasing property by letting

Lemma. If a locally compact Hausdorff space X is the union of a countable
family of compact subsets, then it is the union of the interiors of such a family.

Proof. Let X = U;° 1 A,, A, compact. Each A, can be covered by open neigh-
borhoods having compact closures and hence by a finite number of such
neighborhoods. The closures of these neighborhoods, a finite number for each
A,, comprise a countable family of compact sets whose interiors cover X.

Proposition 0.2.11.2. If a locally compact Hausdorff space X is the countable
union of compact sets, then X is paracompact.

Proof. By the lemma we may suppose that X = U _ 1 A°, where A, is compact
and A, C A° }, for every i.

Now if {Wj is an open covering of X, then for each i the sets (A°+2 -
A,_1) n W. comprise an open covering of A,4, - A°. Therefore, we can
choose a finite subcovering V11, . ., V,p, Since the sets A,+, - Al' cover X,
the V,,, i, j = 1, 2 .. ., cover X. Moreover, {V,;} refines the covering {W..}.
Now let x e A,; then Ak+r is a neighborhood of x which does not intersect any
V,, for i > k + 1. Thus {V,;} is locally finite. I

Example. In R' the compact sets are the closed, hounded sets. If we let A, be
the closed ball with radius i, i = 1, 2, . , and center a fixed v c- R', then R" is
the union of the increasing sequence of the interiors of the compact sets A,.

Proposition 0.2.11.3. A locally compact separable Hausdorff space is para-
compact.

This follows immediately from the previous two propositions

Problem 0.2.11.1. If a Hausdorff space X is the countable union of sub-
spaces homeomorphic to open subsets of R', then X is paracompact.

Problem 0.2.11.2. The space of rational numbers, with the induced topology
from the reals, is paracompact but not locally compact.

Remark. A continuous function has as its domain a topological space. To
generalize the notion of a differentiable function on R" we shall require the
concept of a differentiable manifold on which it will make sense to speak of
differentiable functions.



CHAPTER 1

Manifolds

1.1. Definition of a Manifold
A manifold, roughly, is a topological space in which some neighborhood of
each point admits a coordinate system, consisting of real coordinate functions
on the points of the neighborhood, which determine the position of points and
the topology of that neighborhood; that is, the space is locally cartesian.
Moreover, the passage from one coordinate system to another is smooth in the
overlapping region, so that the meaning of "differentiable" curve, function,
or map is consistent when referred to either system. A detailed definition will
be given below.

The mathematical models for many physical systems have manifolds as the
basic objects of study, upon which further structure may be defined to obtain
whatever system is in question. The concept generalizes and includes the
special cases of the cartesian line, plane, space, and the surfaces which are
studied in advanced calculus. The theory of these spaces which generalizes to
manifolds includes the ideas of differentiable functions, smooth curves, tangent
vectors, and vector fields. However, the notions of distance between points and
straight lines (or shortest paths) are not part of the idea of a manifold but arise
as consequences of additional structure, which may or may not be assumed
and in any case is not unique.

A manifold has a dimension. As a model for a physical system this is the
number of degrees of freedom. We limit ourselves to the study of finite-
dimensional manifolds.

Some preliminary definitions will facilitate the definition of a manifold. If
X is a topological space, a chart at p e X is a function µ: U-± Rd, where U is
an open set containing p and µ is a homeomorphism onto an open subset of
Rd. The dimension of the chart µ: U --- Rd is d. The coordinate functions of the
chart are the real-valued functions on U given by the entries of values of µ;

19
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that is, they are the functions x' = u' o µ: U -* R, where u': R° -* R are the
standard coordinates on Rd. [The u' are defined by u'(a', ..., ad) = a'. The
superscripts are not powers, of course, but are merely the customary tensor
indexing of coordinates. If powers are needed, extra parentheses may be used,
(x)3 instead of x3 for the cube of x, but usually the context will contain enough
distinction to make such parentheses unnecessary.] Thus for each q e U,
µq = (x'q, .. , xdq), so we shall also write µ = (xl, . . , xd). In other termi-
nology we call µ a coordinate map, U the coordinate neighborhood, and the
collection (x1, ., xd) coordinates or a coordinate system at p.

We shall restrict the symbols "u"' to this usage as standard coordinates on
Rd. For RI and R3 we shall also use x, y, z as coordinates as is customary,
except that we shall usually treat them as functions.

A real-valued function f: V--± R is C`° (continuous to order oo) if V is an
open set in Rd and f has continuous partial derivatives of all orders and types
(mixed and not). A function q: V--* Re is a Cm map if the components
u'0g7: V-- Rare C', i = ],...,e.

More generally 9) is Ck, k a nonnegative integer, if all partial derivatives up
to and including those of order k exist and are continuous. (CO means merely
continuous.) A map is analytic if u' o p are real-analytic, that is, may be
expressed in a neighborhood of each point by means of a convergent power
series in cartesian coordinates having their origin at the point. Analytic maps
are C°° but not conversely.

Problem 1.1.1. (a) Define f : R --+ R by

(0 if x<0,fx= e-"" ifx>0.
Show that f is C°° and that all the derivatives off at 0 vanish; that is, f'k'0 = 0
for every k.

(b) If g: R --> R is analytic in a neighborhood of 0, then

gx = (g'k)n)xk/k1

k=0

for all x in a symmetric interval with center 0. Thus fin part (a) cannot be
analytic at 0.

Example. Letting z = x + iy, a complex variable, we define u(x, y) by
u + iv = e-' 4, u(0, 0) = 0. Then u is not C°°, and in fact not even con-
tinuous at (0, 0), but the partial derivatives of u of all orders exist everywhere,
including (0, 0). Thus the requirements of continuity in the definition of C`° is
not superfluous. For functions of one variable, it is of course true that dif-
ferentiable functions are continuous.
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Two charts µ: U-* Rd and r: V --. Re on a topological space X are C--
related if d = e and either U n V = 0 (the empty set) or p o r-1 and r oµ'1
are Cm maps. The domain of w o r-1 is r(U n V), an open set in R° (see
Figure 1).

Figure 1

Other degrees of relatedness are defined by replacing "Cm" by "Ck" or
"analytic." Two charts of the same dimension are always C°-related because
coordinate maps are continuous.

A topological (CO) manifold is a separable Hausdorff space such that there is
a d-dimensional chart at every point. The dimension of the manifold is the
same as the dimension of the charts. Thus there is a collection of charts
{µQ: U,, -r Rd I a E I} such that {Ua I a e I) is a covering of the space. Such a
collection is called an atlas. A C°` atlas is one for which every pair of charts is
C°°-related. A chart is admissible to a C°° atlas if it is Cm-related to every chart
in the atlas. In particular the members of a C°° atlas are themselves admissible.

A C' manifold is a topological manifold together with all the admissible
charts of some C`° atlas. In this book the term "manifold," with no adjective,
will always mean "C°° manifold." (The reason for including all admissible
charts rather than merely those which are in some given atlas is to convey the
idea that no particular coordinate systems are to be preferred over any others
and also to resolve the logical problem of saying just what a manifold is. The
source of this logical difficulty is the fact that two different atlases can have the
same collection of admissible charts, in which case we should like to say we
have only one manifold, not two different manifolds, one for each atlas. On
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the other hand, it is almost invariably the case that a manifold is specified by
giving just one atlas, not the whole collection of admissible charts.)

The Ck manifolds and real-analytic manifolds are defined by replacing
"Cm" by "Ck" and "analytic," respectively, throughout the above chain of
definitions. It should be clear that a C' manifold becomes a Ck manifold
simply by enlarging the collection of admissible charts to include all the Ck-
related ones, and, similarly, a real-analytic manifold becomes a Cm manifold.
Conversely, a C1 manifold becomes a real-analytic (and hence C°°) manifold,
in many ways, by discarding a suitable collection of CI admissible charts so as
to leave only charts which are mutually analytically related, but this result is
not at all obvious, being a very difficult theorem of Whitney. That a C°
manifold may fail to become a C1 manifold is known, and even more difficult
to prove.

Remark. In the definition of a coordinate system we have required that the
coordinate neighborhood and the range in Rd be open sets. This is contrary to
popular usage, or at least more specific than the usage of curvilinear coor-
dinates in advanced calculus. For example, spherical coordinates are used even
along points of the z axis where they are not even 1-1. The reasons for the
restriction to open sets are that it forces a uniformity in the local structure
which simplifies analysis on a manifold (there are no "edge points") and, even
if local uniformity were forced in some other way, it avoids the problem of
spelling out what we mean by differentiability at boundary points of the
coordinate neighborhood; that is, one-sided derivatives need not be mentioned.
On the other hand, in applications, boundary value problems frequently arise,
the setting for which is a manifold with boundary. These spaces are more general
than manifolds and the extra generality arises from allowing a boundary
manifold of one dimension less. The points of the boundary manifold have
a coordinate neighborhood in the boundary manifold which is attached to a
coordinate neighborhood of the interior in much the same way as a face of a
cube is attached to the interior. Just as the study of boundary value problems is
more difficult than the study of spatial problems, the study of manifolds with
boundary is more difficult than that of mere manifolds, so we shall limit
ourselves to the latter.

1.2. Examples of Manifolds
(a) CARTESIAN SPACES. We define a manifold structure on Rd in the most

obvious way by taking as atlas the single chart I: Rd --* Rd, the identity map.
The coordinate functions of this chart are thus the standard (cartesian)
coordinates u'. When we speak of Rd as a manifold we shall intend this standard
structure, unless otherwise stated.
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A C- admissible coordinate map on Rd is a 1-1 CW map µ: U -). Rd, where
U is an open set and the jacobian determinant I 8xt/cu' 1 0 0, where x' _
ut o µ are the coordinate functions. Nonvanishing of the jacobian determinant
is just another way of requiring the map µ-1 to be C.

If ft, i = 1, . ., d, are real-valued C' functions on some open set of Rd and
at some p c Rd we have 18f'/8u' I 0, then the inverse function theorem states
that there is a neighborhood U of p and a neighborhood V of (f'p fdp)

such that the map µ = (f1 .,fd) takes U onto V, is 1-1, and has a C°°
inverse. This gives an effective means of obtaining admissible coordinates. In
particular, polar coordinates, cylindrical coordinates, spherical coordinates,
and the other customary curvilinear coordinates are admissible coordinates
for R2 and R3 provided they are suitably restricted so as to be 1-1 and have
nonzero jacobian determinant.

Example. Let µ = (x2 + 2y2, 3xy): R2 ---- R2, u = x2 + 2y2, r = 3xy. The
jacobian determinant is (8u/8x)(av/dy) - ((9u/ay)(8v/dx) = 6(x2 - 2y2), which
is nonzero except on the two lines y = x/\/2, y = of singular points.
For every point except those on these lines there is some neighborhood on
which µ is an admissible coordinate map. To find what these neighborhoods
might be requires a more detailed analysis. By eliminating x and y from
u = x2 + 2y2, v = 3xy, y = x/V2, we obtain v = 3u12 V2, and we note that
u 0. Thus the line of singular points y = x/V2 is mapped into the half-
line v = 3u/2y/2, u >_ 0; similarly, we find that y = -x/V2 is mapped into
v = -3u/2V2, u > 0. Letting x = c and eliminating y we get a parabola
u = c2 + 2v2/9c2 which is found to be tangent to the two half-lines just found
and, except for the tangent points, lying in the open angle region V between
the two half-lines (see Figure 2). Each of the four connected regions of non-
singular points is mapped by it 1-1 onto V, so for any nonsingular point p the
one of these four regions which contains p, or any smaller neighborhood of p,

V

Figure 2
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may be taken as the neighborhood U asserted to exist by the inverse function
theorem. No neighborhood of a singular point is mapped 1-1 by µ; such
neighborhoods are folded over onto themselves, and neighborhoods of
(0, 0) are folded twice, so that µ is generally 4-1 in neighborhoods of (0, 0).

Problem 1.2.1. What restrictions on the domains and/or ranges of spherical
and cylindrical coordinates can be imposed so as to make them admissible C'
coordinates for R3? Show that all points (but not all simultaneously for one
system), except those where the cylindrical radius r = 0, may be included in
domains of systems of both types.

Problem 1.2.2. If u: R -* R is the identity map, then its cube u3: R -. R is
also 1-1, continuous, and has continuous inverse u113: R --> R. If we take
{u3: R - R} as an atlas for R, this defines a manifold structure on R with a
single chart. Show that this is not the standard manifold structure since
u3: R -.* R is not an admissible chart in the standard structure.

(b) OPEN SUBMANIFOLDS. If M is a manifold and N is any open subset of M,
then N inherits a manifold structure by restricting the topology and coordinate
maps of M to N. We call N an open submanifold of M. (A general submani-
fold may have a smaller dimension and will be defined in Section 1.4.) In
particular, any open subset of Rd is a d-dimensional manifold.

Problem 1.2.3. Show that a manifold may be considered as an open sub-
manifold of Rd if the manifold has an atlas with only one chart.

(c) PRODUCT MANIFOLDS. If M and N are manifolds of dimensions d and e,
respectively, then M x N is given a manifold structure by taking the product
topology as its topology (basic neighborhoods are products of those in M and
N) and as atlas the products of charts from atlases for M and N. If µ: U -± Rd
is a chart on M, and p: V - . Re is a chart on N, their product is (µ, p): U x V
- Rd+e, which is defined by (,a, g)(m, n) = (µm, qn). If x' are the coordinate
functions of µ and y' are the coordinate functions of 9), then the coordinates of
(m, n) in the product chart are (x1m, ..., xdm, y1n, .., yen). Thus if p: M x N
-* M and q: M x N -* N are the projections, p(m, n) = m, q(m, n) = n,
the coordinate functions on U x V are zl = xl o p, 'z d = xd o p, zd+1 =

y1 0 q, ..., Zd+e = ye o q.
This product operation can obviously be iterated, and we may take different

copies of the same manifold as factors. Thus even as a manifold Rd =
R x R x ... x R (d factors). It is easy to see that a circle S' (the curve) is a
one-dimensional manifold. Picturing S' as a part of R2 we see that a cylinder
(the surface) is the manifold S' x R and may be pictured in R3 = R2 x R.
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We may consider S' x Sl as a union, {{p} x S' I p e Sl}, of circles
{p} x S', one for each p e S1. Now if we picture the first factor as being in the
xy plane of R3, satisfying the equations x2 + y2 = 1, z = 0, and for each p
in the first factor picture {p} x S' as being a smaller circle -with center p and
diameters perpendicular to the first circle at p, then the union S' x S' is the
surface of revolution of the small circle about the z axis-a torus (see Figure 3).
It is not difficult to see that the topology induced from R3 on the torus is the
product topology.

Figure 3

The torus is the underlying manifold which models the set of positions (the
configuration space) of a double pendulum. We are thinking of a mechanical
system consisting of two rods, the first of which is free to rotate in a plane
about a fixed axis and the second of which rotates about an axis in a plane
which is fixed relative to the first rod-usually, but not necessarily, the
plane of the first rod. The angles these rods make with a coordinate axis in their
planes may be matched with the angles u, v which occur in the parametrization
of the torus given below, giving a 1-1 correspondence between the positions
of the double pendulum and the torus. The linkage must be arranged so that
each rod is free to make a complete circuit about its axis, or else only a part
of the torus is the model. In fact, if the second rod is blocked by the axis of the
first, so that v is restricted to 0 < E < v < 27r, then the model is a cylinder
rather than a torus.

By adding more rods we obtain physical systems for which the model is the
product of more copies of S'. If the linkage is arranged so that the rod is free
to.move in space rather than in a plane, then some factors S2 (see below) may
be needed. Finally, if one end of the first rod is not fixed at all but is allowed
to move freely in space (or a plane), then a factor R3 (or R2) may be needed.
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More generally, if a physical system is a composite of two systems, each of
which can assume all its positions independently of the other, then the
composite system has as its manifold of positions the product of the mani-
folds of positions of the two component systems. This is so even though
there is some dynamic linkage (e.g., gravitational or elastic) between the
components.

Problem 1.2.4. Consider a spring with a weight attached to each end which is
allowed to move freely in space except that the length L of the spring is re-
stricted to L, < L < L2. Describe the configuration space as a triple product
of R3 and two other manifolds.

(d) LOW DIMENSIONS. A manifold of dimension 0 is a set of isolated points,
that is, a set with discrete topology.

A manifold of dimension I which is connected is either R or S'. (This is not
obvious, but a proof will not be given here.) The other manifolds of dimension
I consist of disjoint unions of copies of R and S'. The number of copies of
each must be finite or countably infinite in order that the manifold have a
countable basis of neighborhoods.

Problem 1.2.5. Let M = S' = {(a, b) I a2 + b2 = 1, a, b e R}. As topology
on M we take the induced topology from R2. The following conditions
define a unique f : M -* R: (a) For every p e Si, 0 <_ fp < 27T; and (9) if
p = (a, b) a S', then a = cosfp, b = sinfp.

(a) Of the properties of a coordinate map listed, which does f satisfy?
(1) A coordinate map has open domain.
(2) A coordinate map is 1-1.
(3) A coordinate map has open range.
(4) A coordinate map is continuous.
(5) The inverse of a coordinate map is continuous.

(b) What is the largest set to which f can be restricted so as to be a coor-
dinate map f-?

(c) Let g be defined in the same way as f - except that the range of g is a
different (and open) interval in R. For some specific choice of interval show
that { f -: U -* R, g: V--* R} is an analytic atlas for S1.

A manifold of dimension 2 may reasonably be called a surface, although
there are such manifolds which cannot be placed in R3. (See Problems 1.2.13
and 1.2.14.) Also, to make what are usually called surfaces in R3 into mani-
folds, it is necessary to eliminate singular points, but these singular points
cannot be handled by the usual methods of analysis from advanced calculus
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anyway. (For example, the tangent plane is customarily defined only at non-
singular points.) To see that surfaces in R3 are manifolds we examine how they
usually arise.

(1) If the surface is the level surface of a C°° function f: R3 -> R, then the
singular points are those at which df = 0, that is, at which all three partial
derivatives of f vanish. At a nonsingular point p = (xo, yo, z0), at which say
of/ay(p) # 0, there is an open neighborhood U of (xo, ze) in R2 such that the
equation f(x, y, z) = c has a unique Cm solution y = g(x, z) with yo =
g(xa, zo), where c = fp. This follows from the implicit function theorem.
Then

V = {(X, g(X, Z), Z) I (x, Z) E U}

is an open subset of the surface with respect to the induced topology from R3,
and the projection from V to the xz plane,

µ: V -> U, given by µ(x, g(x, z), z) = (x, z),

is a coordinate map on V.
We can form an atlas for the nonsingular part of the surface f-1c from

such maps. If of/Oz(q) : 0 and

p: W -* X is given by p(x, y, h(x, y)) = (x, y)

in a neighborhood W of q, where z = h(x, y) is the C- solution of f(x, y, z) = c
for z on X such that q = (x,, y, h(x,, y,)), then on the overlap of W and V,

p. ° T-1(x, y) = µ(x, y, h(x, y))
= (x, h(x, y)),

and similarly,
-P ° !t1(X, Z) = (x, g(X, z))

Since h and g are C°° functions, and x is a Cm function of either (x, y) or
(x, z), the maps µ o 9)-1 and q, ° µ-1 are C. This shows that the described
atlas is Cm-related and that the nonsingular points on the surface form a C°°
manifold.

More specifically, if we take f = x2 + y2 + z2 and c = 1, then the set of
solutions to f = 1 is a sphere, S2, and since df = 0 only at (0, 0, 0), all points
of the sphere are nonsingular.

The equation x2 + y2 + z2 = 1 has two analytic solutions for z in
the open disk Uz = {(x, y) I x2 + y2 < 1}, namely, z = -,/(1 - x2 - y2) and
z = -,,/(1 - x2 - y2). The corresponding charts on S2 are µZ : U= -* U2f
tL : Uz -> Uz, where U, is the open upper hemisphere and U= is the open
lower hemisphere, and µ= (x, y, z) = (x, y) for (x, y, z) e Uz . The other map,
p , has the same formula as µz , but it is defined on UZ , where the third
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coordinate is negative rather than positive. In the same way we get charts
µY': Uy - U,,, 1,,Y-: U; -f U, µx : UX -> UX, µX-: UX -+ Ux on the left,
right, front, and back open hemispheres. These six charts form an analytic
atlas for S2, so S2 is an analytic manifold.

(2) Surfaces are sometimes given parametrically. That is, three C°° functions
x = f(u, v), y = g(u, v), z = h(u, v) are defined in some open region in the uv
plane. The singular points are those for which the two triples of partial
derivatives (af/au, ag/au, ah/au) and (af/av, ag/av, 8hlav), are proportional
(including one or both having all three entries = 0).

At nonsingular points these two triples will be direction numbers for two
nonparallel lines which determine the tangent plane, but at singular points the
two lines unite or are indeterminate (one or both all 0) and the tangent plane
may not exist.

If (u0, v0) are the parameters of a nonsingular point, then there is an open
neighborhood U of (uo, vo) in R2 on which the parametrization is 1-1 onto an
open set V in the surface. Indeed, nonsingularity implies that one of the
jacobian determinants

if/au of/av

ag/au ag/av

of/au of/av

Oh/au ah/i)v

ag/au ag/av

ah/au Oh/Pr

is nonzero, say the first one, in which case there is an open neighborhood
U of (uo, vo) such that (u, v) --- (flu, v), g(u, v)) is 1-1 with a C`° inverse on U,
so certainly (u, v) -> (flu, v), g(u, r), h(u, v)) is also 1-I on U. The inverse of
this map U--* V is then a coordinate map µ: V--> U, the parameters u, v
themselves being the coordinate functions. The projection into R2,'P: V->- W,
9,(x, y, z) _ (x, y) is also 1-1 and Ca'-related to µ, so it can serve as an alterna-
tive coordinate map. However, the parametri/ation is usually 1-1 on a larger
neighborhood than U on which one of the three jacobians is nonzero, so that
It may be extended to a more inclusive coordinate map and is thus usually to
be preferred over p.

The complete parametrization map (u, v) -+ (.x, y, z) may not be 1-1 even
on the nonsingular part, but may cover the same part of the surface with
several different regions of the uv plane. Thus there can he nonidentical
coordinate transformations from the uv plane into itself. These will be C' at
nonsingular points, so the set of nonsingular points forms a two-dimensional
manifold.

In a neighborhood of a nonsingular point a normal vector can be chosen to
vary as a C' function of (u, t). Letting f be the directed distance to the surface,
with the direction determined by the chosen normal field, we get the surface
locally as the solutions off = 0, where f is a C' function. Thus nonsingular
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level surfaces are locally parametrized surfaces (the coordinates are param-
eters) and nonsingular parametrized surfaces are locally level surfaces.
Methods (1) and (2) of specifying surfaces are locally equivalent. However,
they are not globally equivalent, since nonsingular level surfaces are always
orientable (two-sided, having a global continuous nonzero normal field),
whereas nonsingular parametrized surfaces may be nonorientable (one-sided).
In fact, the gradient off is a normal field to the surface f = c, and it is not
difficult to realize the Mobius band, which is nonorientable, as a parametrized
surface.

The singularities of a parametrization may be either an unavoidable con-
sequence of the shape of the surface (it may have a cusp or a corner at which
no tangent space can be defined) or it may be an accident of the parametriza-
tion itself. An example of the latter is the standard spherical coordinate
parametrization of the unit sphere,

x = sin u cos v,
y = sin u sin v,
z= cos u,

for which the points (0, 0, 1) and (0, 0, -1) are singular points. For this
parametrization the uv coordinate transformations assume one of two forms:

ua=us + 2plr,
v, = vg + 2r?r,

or

u, = u, + (2q + 1)1T,
v, = - v, + 2s7r,

where p, q, r, and s are integers and the three coordinate maps µ, = (ua, Va),
Ps = (ue, vs), w, = (u v,) are related.

Problem 1.2.6. Show that S2 has an atlas with two charts.

The torus in R3 may be parametrized without singularities:

x = (a + b sin v) cos u,
y = (a + b sin v) sin u,
z = b cos v,

where a is the radius of the first circle S1 in the xy plane and b is the radius of
the small second circles having their diameters perpendicular to the first
circle, as in the above description of the torus as a product S1 x S1. The
parameters u and v measure the angles around the first and second circles.
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The possible uv coordinate transformations are of the form

ud=uQ+2pir,
vd = v5 + 2glr,

where p and q are integers.

Problem 1.2.7. Show that the parametrization of the torus given above may
be inverted on three different domains so as to obtain an atlas of three charts
for the torus.

(e) HYPERSURFACI s. The idea of a surface may be generalized to higher
dimensions. In a manner analogous to that for surfaces, we may show that the
nonsingular points of a level hypersurface,

M={mIfm=c,dfm94 0},

where f: Rd --*- R is a C°° function and c is a constant, form a manifold of
dimension d - 1. Local coordinates are obtained by projections into the
(d - 1)-dimensional coordinate hyperplanes and are shown to be C°°-related
by means of the implicit function theorem. Alternatively, we may consider
parametric manifolds in Rd, with the number of parameters any number less
than d, in particular, d - I parameters for a hypersurface. Nonsingularity is
defined in terms of rank of jacobian matrices.

In particular, we define the d-dimensional sphere to be

d + 1

Sd=IpERd+1I (u`p)2= 1}ll ,=1

In analogy with S', the projections which kill one component u`p give 2(d + 1)
coordinate maps on the hemispheres for which a given up is constant in sign.

Problem 1.2.8. An open subset of Rd is not compact (cf. Section 0.2.8).
Show that a compact manifold (e.g., Sd, which is a closed bounded subset of
Rd+1) cannot have an atlas consisting of just one chart (cf. Problem 1.2.3).

Problem 1.2.9. Consider a rod of length L in space R3. Letting the standard
coordinates of one end be u1, u2, u3 and of the other end be u4, u5, us, the
collection of positions of this rod can be viewed as the hypersurface in Re
given by the equation

(u1 - u4)2 + (u2 - u5)2 + (u3 - u6)2 = L2.

Show how this manifold is also the same as R3 x S'.

The manner in which S' x S' is placed in R3 to get a torus may be gener-
alized to an imbedding of Sd X Se in Rd+e+1 as a hypersurface; that is, a



S1.2] Examples of Manifolds 31

small copy of Se is placed in an Re" perpendicular to Sd at each point of
Sd as it is contained in R1 +1 = Rd+1 x {0} c Rd+e+1

(f) MANIFOLDS PATCHED TOGETHER. A manifold can be given by specifying
the coordinate ranges of an atlas, the images in those coordinate ranges of the
overlapping parts of the coordinate domains, and the coordinate transforma-
tions for each of those overlapping domains. When a manifold is specified in
this way, a rather tricky condition on the specifications is needed to give the
Hausdorff property, but otherwise the topology can be defined completely by
simply requiring the coordinate maps to be homeomorphisms. Two examples
follow.

(1) Let there be two charts µ: U-* S, q: V-k S such that the range of each
is the rectangular strip

S={(a,b)I-5<a<5,-1<b<1}.
The overlapping domain U n V corresponds to the union of two end rec-
tangles under both µ and p,

T=u(UnV)
=p(UnV)
={(a,b)I-5<a<-4or4<a<5and-1 < b < 1).

It remains to define µ o p (or p 0 µ-1) on T, which we do by the formula

(a + 9, b) if -5 < a < -4,
-1(a'

b) (a - 9, -b) if 4 < a < 5.

The reader should paste two strips of paper together in accordance with this
formula (at least mentally) if he wishes to see what this manifold represents.
Since the formula components represent rigid euclidean transformations, the
paper need not be torn or stretched.

To obtain the manifold more specifically as a set of elements with topology,
etc., we take disjoint copies of the ranges of the coordinate maps and "iden-
tify" points in these ranges which correspond under the overlap formulas.
The precise meaning of "identification" comes from the idea of an "equiva-
lence relation," which is a modification of the idea of equality in sets to mean
something other than "identically the same." The idea is not new, since it is
necessary to give precise meaning to such things as 4/6 = 6/9.

In the case at hand the coordinate ranges are not already disjoint, so we
manufacture disjoint copies of their common range S by tagging the elements
of S with a 1 or a 2:

S. = {(S, a) I S e S},

where a = 1 or 2 and let P = S1 U S2. We define an equivalence relation on
P in accordance with a desire to identify a member of S1 with a member of S,
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if they are connected by the coordinate transformation F = µ o p-, but
otherwise to make no identifications between members of P: For all s, t a S,

(s, 1)E(t, 1) iff s = t,
(s, 2)E(t, 2) iff s = t,
(s, 1)E(t, 2) if t e T and s = Ft,
(s, 2)E(t, 1) iff s e T and t = Fs.

In this case the equivalence classes have only one or two elements: If s 0 T
and t e T, then

[s, a] _ {(s, a)}, where a = 1 or 2,
[t, 1 ] _ {(t, 1), (F - l t, 2)},
[t, 2] {(Ft, 1), (t, 2)}.

We unify the definitions of the coordinate maps µ and 9) by calling them
µ,., a = 1 or 2. Their domains are U. = [Sa], the collection of all equivalence
classes of members of SQ. The maps are given simply by

µ,[s, a] = S.

Since these µ,, are to be the coordinate maps on M = PIE, the topology on
M must be defined in such a way that they are homeomorphisms. Accordingly
we define the open sets of M to be of three types: (a) A subset of U, is open
if it corresponds under µ, to an open set in S; (b) a subset of U2 is open if it
corresponds under it, to an open set of S; (e) a subset of M which is neither
a subset of U, nor a subset of U2 is open if the intersections of the subset
with U, and U2 are both open according to (a) and (b).

Problem 1.2.10. Complete the demonstration that the M defined above is an
analytic manifold, including the proof that it is a Hausdorff space.

Problem 1.2.11. By extending S and the formula to include points where
b = ± 1, a boundary manifold is attached to this M. What is this boundary
manifold intrinsically?

(2) In this example there are three coordinate systems in the given atlas, all
with R2 as their range. Let them be µ, = (xl, x2), µ2 = (yl y2), 143 = (zl, z2).
The overlapping domains correspond to as much of R2 in each case as makes
sense in the following formulas.

xl = 1/y2, x2 = yl/y2,
yl = 1/Z2, y2 = zl/Z2,
zl = 1/x2, z2 = xl/x2.

We could proceed as in (1) to manufacture the manifold by taking three
copies of R2 and defining an equivalence relation corresponding to these
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formulas. The manifold defined by these coordinate transformations admits
a more concrete interpretation. Let S2 be the unit sphere in R3 with center at
the origin. We define two opposite points of S2 to be equivalent and M to be
the set of equivalence classes; thus an element of M is a nonordered pair
{p, -p}, where p e S2. If p = (a, b, c) we have written -p for (-a, -b, -c).
We could also consider the elements of M to be the lines through the origin in
R3, where the line through p and -p corresponds to {p, -p}. The name for
M is the analytic real projective plane.

If x, y, z are the cartesian coordinates on R3, then the ratios, x/y, x/z, y/z,
etc., have the same values on p and -p, so they are well-defined functions on
the subsets of M on which the denominators are nonzero. We obtain the
coordinate maps on M from pairs of these ratios.

µi = (Y/x, z/x) = (x1, x2),
µ2 = ((z/Y, x/Y) = (Yl, y2),
/L3 = (x/z, Y/z) = (z', z2).

The corresponding coordinate domains are those {p, -p} for which xp i4 0,
yp 7(z 0, and zp 0, respectively.

Projective spaces of higher dimension can be defined analogously as oppo-
site pairs on higher-dimensional spheres.

Problem 1.2.12. Just as the circle may be thought of as a half-closed interval
[0, 27r) with the end 0 bent around to fill the hole at 27r, the torus may be
considered to be the "half-closed" square [0, 27T) x [0, 27.) with the closed
sides folded over to fill the opposite open side in the same direction (see

A

B B4

A

Figure 4

Figure 4). ("Direction" refers to direction in the plane R2, not cyclic direction
around the square.)

Problem 1.2.13. Show that the projective plane may be formed by folding the
square so that the closed sides fill the open sides in the opposite direction (see
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A

B V

A

Figure 5

B

Figure 5). Another corner must be provided. To make the correspondence,
stretch the square over a hemisphere with the edges laid along the bounding
circle so that the corners divide the circle into four equal arcs. Since that
stretching cannot be done so that the map at the corners is C°°, this identifica-
tion is only intended to be topological.

Problem 1.2.14. By identifying one pair of opposite sides of the square in the
same direction and the other in the opposite direction we get a two-dimensional
manifold known as a Klein bottle (see Figure 6). The identification can be done

A

B

0
A

Figure 6

W B

differentiably since the four corners of the square fit together nicely. Give an
analytic definition of the Klein bottle in the form of (1) and (2) above, which
has four charts pictured as having centers at the center of the original square,
the corner of the original square, and the centers of the two sides.

The Klein bottle can be realized as a parametric surface in R' in much the
same way as the torus in R3. At each point of the circle of radius a in the xy
plane there is now available a three-dimensional hyperplane in R' perpen-
dicular to the circle. A smaller circle of radius b < a can be rotated about a
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diameter at half the rate of revolution about the circle of radius a, giving a
Klein bottle. The parametrization is given analytically as follows:

x = (a + b sin v) cos u,
y = (a + b sin v) sin u,
z = b cos v cos u/2,
w = b cos v sin u/2.

Points in the uv plane which are identified as indicated in Figure 6 are mapped
into the same points in R' by these equations.

Remarks. The projective plane and the Klein bottle cannot be faithfully
represented as surfaces in R3 without "self-intersections." To describe what
self-intersections are, we give the example of the disconnected manifold
consisting of two copies of R2 pictured in R3 as two intersecting planes. The
points along the line of intersection have a dual role, each being considered as
two points, one in each copy of R3. (This is the reason the planes form a
disconnected manifold.) When such duplications are allowed, we say that the
manifold is immersed rather than imbedded in R3. In this sense the projective
plane (Boy's surface) and the Klein bottle can be immersed as surfaces in R3.

The three-dimensional projective space, RP3, is the same, insofar as its
manifold structure is concerned, as the set of all orthogonal matrices of order
3 having determinant +1. Since an orthogonal matrix of order 3 having
determinant +l is equivalent to a rotation of R3 about the origin, projective
3-space is in turn the same manifold as the configuration space of an object
in R3 which has one fixed point but is otherwise free to rotate about any
axis through the fixed point.

If an object is free to move in any way in space, we may determine its
position by choosing a point in the object and specifying both where that
point is placed in R3 and how the object is rotated about that point relative to
some initial position. Since these specifications are independent, the mani-
fold of positions of a rigid object in space is R3 x RP3.

1.3. Differentiable Maps
If F: M -- N, where M and N are C`° manifolds, then we call F a C°° map
if the coordinate expression for F consists of C°° maps on cartesian spaces.
We now elaborate this statement into a complete definition, in particular
making clear what is meant by "coordinate expressions."

Let µ,: it > Rd and µ2: V --* Re be C°° charts on M and N, so that U and
V are open subsets of M and N, respectively. Assume that F: M --I N is a
continuous map, so that W = F-1V is an open subset of M (see Figure 7).
Let W, = µ, W, so that W, is an open set in R I. The µ,-µ2 coordinate expression
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Figure 7

µ2 V

for F is the map Fee o Fo iz ': W, -- Re. The map F is C°° if all such coor-
dinate expressions, for all admissible charts µ,, µ2, are C`° cartesian maps.

Proposition 1.3.1. A map F: M --+ N is C°° if the teaµo coordinate expressions
for F are C' for those it, in some atlas of M and those po in some atlas of N.

Proof. Let {µa: U Rd a e I} and {µo: VV -* Re f EJ} be atlases of
M and N, respectively, such that for every a e I, fl e J, µo o F- F1a' is a C'
map. Suppose that µ,, µ2 are any other charts as in the definition, so
µ2 o F o Fci ' : W, -* Re. We must show that this is Cm, but since being C°° is
a local property it suffices to show it in a neighborhood of each point of W1.
If m, e W1, then there is an a E I and 8 e J such that µi 'm, = m e U. and
n = Fm e VB. By hypothesis, µo o Fo µa' is a Cm Cartesian map. But µ, and
,u2 are Cm-related to µc, and µo, respectively, so Fca o µ;' is defined and C`° in
some neighborhood of m, and 1A2 o po' is defined and C° in some neighbor-
hood of no = lion.

The composition of Cm cartesian maps is C`°, so that µ2 o Fea 1 o µo o Fe
µa' µa ° µy ' is a C- map. However, it is defined on some neighborhood of
m, and coincides with the restriction of µ2 o F o p- ' on that neighborhood,
so that µ2 o Fo µi' is C`° in a neighborhood of m,.

In practice, verification that maps are C°° must be done by showing that the
individual components of the coordinate expressions have continuous partial
derivatives of all orders. These components are the functions u' o µ2 o F o µi ' =
f', i = I, .., e, which are real-valued functions of d real variables defined on
an open subset W, or Rd.
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If we let y' = u` - IL2 be the coordinate functions of µ2 and xJ = ul o p, be
the coordinate functions of µl, then we have y' o Fo iii' = f', or y' o F =
f' o µl. Applying this to m c W,

y'Fm = f'µim
= f'(x'm, ... , x' m).

It is customary to write this as an equation between functions in the form

y' = f`(x', ..., xa), (1.3.1)

but since this does not indicate the role of the map F itself, we prefer the more
accurate version

y` o F = f'(xl, ..., xa). (1.3.2)

These equations are also called the coordinate expression for F.
In particular, we may consider the case N = R of real-valued functions on

M. It is interesting that C' functions need be defined directly only in this case,
and the general definition of a C°° map then follows by means of the following
proposition.

Proposition 1.3.2. If F: M -* N, then F is C°° if for every C°° real-valued
function y: V - . R, where V is an open submanifold of N, y o F is a Cm real-
valued function on the open submanifold F-' V of M.

Proof. This follows trivially by taking as y, in turn, the coordinate functions
y'onV'N.

A diffeomorphism from M onto N is a 1-1 onto C' map F: M- . N such
that the inverse map F-': N- . M is also C. Two manifolds are diffeomor-
phic if there is a diffeomorphism from one to the other. This is the natural
notion of isomorphism, or sameness, for manifolds. It is an equivalence
relation. Two diffeomorphic manifolds are the same in all properties which
concern only their structure as manifolds. In particular, they are topologically
the same, that is, homeomorphic.

Examples. (a) Let

F=1 uu2:(-1,1)--> R.

Then solving x = Fu for u, bearing in mind that we must take the root of the
quadratic equation which is between - I and 1, we get

2x 1
u 1+V(1+4x2)=FJx.

Thus F has an inverse defined for all x c R, so F is onto and 1-1. Moreover,
both Fand F-' are quotients of C¢ functions with nonzero denominator, and
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so are C'. Hence F is a diffeomorphism and R is diffeomorphic to the open
interval (-1, 1).

If (a, b) is any other open interval, then

}[(1 + u)b + (1 - u)a]: (-1, 1) --3,- (a, b)

is a diffeomorphism, so every connected open bounded submanifold of R is
diffeomorphic to R. It is not difficult to see that the other connected open
submanifolds of R, the open half-lines (-oo, b) and (a, oo), are also diffeo-
morphic to R.

(b) If F is the map in Example (a), then

F x F: (-1, 1) x (-1, 1) -* R2

shows that an open square is diffeomorphic to the plane.
(c) Let x, y be the Cartesian coordinates on R2, and let u, v be the restric-

tions of x, y to the unit disk D2 = {(x, y) I x2 + y2 < 11, viewed as an open
submanifold of R2. Define G so that it is the same on radial lines as F above;
that is, G: D2 - R2 has coordinate expression

x-G= u
1

-u2-U2r

o G =
V

J 1-u2-v2
The coordinate expression of the inverse map G-1: R2 -> D2 is then

uoG-1 = 2x
1+\/(1+4x2+4y2)'

v o G-1 = 2y
1 + \/(1 + 4x2 + 4y2)'

These are C°°, onto, and 1-1 for the same reasons that Fand F-1 were, so G
is a diffeomorphism and a circular disk is diffeomorphic to the plane and
hence also to a square.

A topological manifold may have two different Cm atlases which are not
Co-related, but the two C' manifolds determined by these atlases can still be
diffeomorphic. The catch is that the identity map is not a diffeomorphism. In
fact, two C°' manifold structures on a manifold of dimension _<4 are invariably
diffeomorphic. On the other hand, any compact manifold of dimension >_ 7
admits several nondiffcomorphic C¢ manifold structures; that is, there can be a
homeomorphism between two manifolds but no diffeomorphism.

For a simple example of different CQ structures which are still diffeomorphic,
consider R with the standard structure, {u: R - . R} as atlas (with one chart), and
M = R with the structure having {u3: R -+ R} as atlas (again, one chart). Since
an admissible chart is always a diffeomorphism on its open submanifold domain,
the diffeomorphism from M onto R is the coordinate map of M, U3: M -* R. The
diffeomorphism going the other way is u113: R -> M. The identity map u: R -+ M
is C°°, since the coordinate expression is u3 o u o u = u3: R -> R. The identity
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map u: M - R is not CD, since the coordinate expression is u o u o u13 =
ulna: R -> R, which is not C. Thus the identity map is not a diffeomorphism.

There are examples of nondiffeomorphic C' structures on manifolds of
dimension z 7. These are not easy to describe, however.

Problem 1.3.1. Let µ: U-. Ra be an admissible chart of M. Then U is an
open subset of M and V = p U is an open subset of Ra, so U and V may be
viewed as manifolds; specifically, they are open submanifolds of M and Rd.
respectively. Show that µ: U --> V is a diffeomorphism.

Problem 1.3.2. Show that the composition of C°° maps is a C'° map.

Example. The parametrization of a sphere F: R2 ---> R3, F(u, v)=(cos u sin v,
sin u sin v, cos v), is a Cm map. The coordinate expression for F in terms of
the standard coordinates are what is seen in the definition, and may be written
in the alternative form

xoF=cosusinv,
yo F= sinusinv,
zoF= cos v.

(1.3.3)

If we view the same formula as defining a map F: R2 --> S2, it is still a Cm
map. It we take as atlas on R2 the identity chart (u, v) and as atlas on S2 the
six charts described in Section 1.2(d), then the six corresponding coordinate
expressions for Fare the formulas (1.3.3) taken two at a time and restricted to
appropriate open subsets of R2. The fact that F has singularities as a para-
metrization of the sphere has no bearing on it being a C°° map or not.

Problem 1.3.3. Let RP2 be the projective plane, as in Section 1.2(f)(2),
viewed as nonordered pairs {{p, -p} I p e S2). Show that the 2-1 map
F: S2 -> RP2, where Fp = {p, -p}, is C.

Problem 1.3.4. If F: S2 -_ RP2 is the same as in Problem 1.3.3, show that
G: M--* S2 is C" if G is continuous and Fo G: M--> RP2 is C. Find an
example such that G is not continuous but Fo G is C.

Problem 1.3.5. If S is a surface without singularities in R3, show that the
inclusion map is S -* R3 is a C°° map. Do both cases, level surfaces and
parametric surfaces.

Problem 1.3.6. If M = C x C, where C is the complex number field which
as a manifold is the same as R2, let complex multiplication be F: M-> C,
F(z, w) = zw. Show that Fis C.
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Problem 1.3.7. Let S' be viewed as the unit circle with center 0 in C. Then
S' x S' c C x C = M. Let G: S' x S' -> S' be the restriction of F in
Problem 1.3.6. Show that G is C.

Problem 1.3.8. Let M = C - {0}, the nonzero complex numbers and an
open submanifold of R2, and define H: M-+ Mas Hz = 1/z. ShowthatHis C`°.

Problem 1.3.9. Show that the projections p: M x N--. M, q: M x N--). N,
p(m, n) = m, q(m, n) = n, and the injections i,,: M -a M x N, mi: N-I.
M x N, inm = ,in = (m, n), are C.

Problem 1.3.10. If F: P - M x N, show that F is C`° if p o F: P --* M and
q o F: P--± N (p, q as in Problem 1.3.9) are C.

1.4. Submanifolds
A manifold M is imbedded in a manifold N if there is a 1-1 C' map F: M -)- N
such that at every m e M there is a neighborhood U of m and a chart of N at
Fm, ii: V - Re, w _ (y', . ., ye), such that x' = y' o Fl u, i = 1, ..., d, are
coordinates on U for M. The map F is then called an imbedding of M in N.

If the requirement that F be 1-1 is omitted but the requirement on obtaining
coordinates for M from those of N by composition with F still holds, then M
is said to be immersed in N and F is said to be an immersion. Another way of

Y

x

immersion of R2 into R3

Imbeddings

Figure 8
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stating this is to require that each point m of M be contained in an open
submanifold U of M which is imbedded in N by F. Thus an immersion is
a local imbedding (see Figure 8).

A submanifold of N is a subset FM, where F: M --. N is an imbedding,
provided with the manifold structure for which F: M -* FM is a diffeo-
morphism.

The dimension of a submanifold is obviously not greater than the con-
taining manifold's dimension. If it is equal to the dimension of the containing
manifold, then the submanifold is nothing more than an open submanifold,
which we have defined previously.

The topology of a submanifold need not be the induced topology from the
larger manifold. Of course, the inclusion map is Cm, in particular continuous,
so that the open sets of the induced topology are open sets in the submanifold
topology, but the submanifold topology can have many more open sets.

Examples. (a) Imbed an open segment in R2 by bending it together in the
shape of a figure 8, with the ends of the segment approaching the center of the
segment at opposite sides of the cross (see Figure 9). In the induced topology

Figure 9

the neighborhoods of the center point always include a part of the two ends,
but not in the submanifold topology.

(b) Let Ft = (e1t, e`°`) e S' x S' - C x C, where a is an irrational real
number. Then F: R -* S' x S' is an imbedding. The line R is wound around
the torus without coming back on itself, but filling the torus densely (see
Figure 10). It crosses any open set in the torus infinitely many times, so the

A

B B

A

Figure 10
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open sets in the induced topology have infinitely many pieces and are always
unbounded in R. This is quite unlike the standard topology on R.

A submanifold must be placed in the containing manifold in quite a special
way. For example, such things as cusps and corners are ruled out, even though
these may occur on the range of a C°°, 1-1 map which is not an imbedding.
To describe carefully the special nature of a submanifold, we define a coor-
dinate slice of dimension d in a manifold N of dimension e, to be a set of
points in a coordinate neighborhood U with coordinates y', ... , ye of the form
{m I M E U, yd+'m = cd+1 yem = ce), where the c' are constants deter-
mining the slice. In other words, a coordinate slice is the image under the
inverse of a coordinate map of the part of a d-dimensional plane in Re which
lies in the coordinate range.

Proposition 1.4.1. If M is a submanifold of N, then for every m E M there are
coordinates y', ... , ye for N in a neighborhood of m in N such that the coor-
dinate slice corresponding to constants cd+1 = yd+'m, . ., ce = yem is a
neighborhood of m in M and the restriction of y', ... , yd to that slice are
coordinates for M.

Proof. Let F: P -- N be the imbedding such that FP = M. Choose
coordinates z', . . ., ze for N in a neighborhood of m in N such that
x' = z' o F1 a, , xd = zd o Flu, are coordinates at p = F - 'm in coordinate
neighborhood U P. Since Fis Cm we may write

ztoF=f'(x', ,xd), i = 1,. .., e,

as in (1.3.2), where the f' are C°° functions on an open set in Rd. It is clear that
f (x', . . ., xd) = x` for i = 1, . . ., d, but the remainingf', i > d, need not be
so simple.

Define
y'=z', i<d,
y' = z' - f'(z', . ., zd), i > d.

Then it is clear that

z'=y', i<d,
z' = Yt + .f t(Yl, .. , yd), i>d,

so the maps µl = (z', . . ., ze) and µ2 = (y', ..., ye) are C°° related both ways.
The domain of the y"s is included in that of the z"s, so that we can claim that
12 is an admissible chart without checking further relations with other coor-
dinates. Moreover, FU is the coordinate slice yd{' = 0, .., ye = 0, and the
restrictions of y', .. , yd to FU correspond to x' under F, so are coordinates
for M on FU.
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Remark. No claim is made that we can obtain all the points of M which lie
in an N-neighborhood of m as members of a single coordinate slice. In fact,
this is not possible in the case where m is the crossing point of the figure 8 in
Example (a), or for any m in Example (b).

The converse of Proposition 1.4.1 is obvious from the definition; that is,
if a subset has a manifold structure which is locally determined by coordinate
shces with the nonconstant coordinates furnishing coordinates on the slice for
the manifold structure of the subset, then the subset is a submanifold.

Whitney has proved that every manifold is diffeomorphic to a submanifold
of Re; if d is the dimension of the manifold, then we need take e no larger
than 2d + 1. Thus manifold theory can be considered to be the study of
special subsets of cartesian spaces, if desired.

Example. (c) If f: R' --, R is a C°° function, then the nonsingular points of
a level hypersurface

M = (mIfm=c,dfm00)
form a (d - 1)-dimensional submanifold on which the topology is the topology
induced from Rd. Indeed, for each m e M one of the partial derivatives of
f does not vanish at in, say, of/aud(m) # 0. Then in some neighborhood of m
we have that (u1, ..., ud-1, f) is a coordinate system for Rd, because its
jacobian determinant with respect to (u',.. ., ud) is 8f/aud 3 4 0. In that neigh-
borhood the points of M are those of the coordinate slice f = c. Hence M
is a submanifold by the converse of Proposition 1.4.1. Note that the property
disclaimed by the remark above, which is stronger than being a submanifold,
is satisfied by these level hypersurfaces.

Problem 1.4.1. The map F: R-- R2 given by Ft = (t2, t3) is obviously Cm.
Why is it not an imbedding?

Problem 1.4.2. Show that the injections i,,: -M - M x N and mi: N --*
M x N (see Problem 1.3.9) are imbeddings and that the submanifolds
iN of M x N have the induced topology.

Problem 1.4.3. Let F: M -> N be any C`° map and define the graph of F to
be {(m, Fm) I m e M} c M x N. Show that the graph of F is a submanifold
of M x N with the induced topology and imbedding map (i, F): M --* M x N
given by (i, F)m = (m, Fm).

1.5. Differentiable Curves
In some contexts a curve is almost the same as a one-dimensional submani-
fold, but we prefer to deal only with curves which have a specific parametriza-
tion. Technically, then, changing the parametrization of a curve will give a
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different curve, but we shall often ignore the distinction and speak of a curve
as if it were a set of points. Generally our curves will have a first and last
point but we shall also consider curves with open ends.

A differentiable curve is a map of an interval of real numbers into a manifold
such that there is an extension to an open interval which is a C°° map. The
interval on which the curve is defined may be of any type, open, closed, half-
open, bounded on both, one, or neither end. When the interval is open no
proper extension is needed, but at a closed end we require that there be a C'
extension in a neighborhood of the end so that differentiability at that end
will make sense.

If y: [a, b] --- M is a C`° curve, then, by definition, there must be a C'
extension y: (a - c, b + c) - M, for some c > 0, such that yx = yx for every
x e [a, b] (see Figure 11). We say that ya is the initial point of y, yb is the

a--
a-E b+E

I I H
a b

Figure 11

final point, and that y is a C`° curve from ya to yb. A closed curve y is one
defined on a closed interval [a, b] and for which ya = yb. A simple closed
curve is a closed curve defined on [a, b] which is 1-1 on [a, b).

A C°° curve may double back on itself, have cusps, and come to a halt and
start again, even turning a sharp corner in the process [see Example (a)
below]. These features frequently prevent the curve from being an imbedding
and prevent the range from being a one-dimensional submanifold. There may
even be so many cusps that the curve cannot be chopped into finitely many
pieces which are submanifolds.

In Example 1.4(b) there is a C°° curve F: R -* S' x S' defined which comes
arbitrarily close to every point in S' x S1. The range is a one-dimensional
submanifold. In Problem 1.4.1 the Cm curve F: R -). R2 has a cusp, since it
comes into (0, 0), halts, and goes out on the same side of the x axis moving in
the opposite direction.
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Examples. (a) If f is the C°° function in Problem 1.1.1(a),
(0 ifx-0,fx = e-"" ifx > 0,

then yx = (fx, f(-x)) defines a C°° curve y: R -> R2 which enters the origin
(0, 0) from the positive y axis, halts at (0, 0), and exits via the positive x axis.

(b) Let h: R - . R be a C°° probability distribution which vanishes outside
the interval (0, 1); for example,

hx =
(0 ifx 1,

celIX(X-" if 0 < x < 1,

where c is a positive normalizing constant chosen so that the area under the
hump h is I. Let g be the indefinite integral of h, gx = to h(t)dt. We define a
Cm function f which rises and falls periodically to level spots of length 1 at
heights 0 and I by the specification

fx
gx-g(x-2) if0<_x<4,
f(x + 4) for all x.

Then the curve y: R -3 R2 given by yx = (fx, f(x + 1)) is a C°° periodic
parametrization of a square.

Remark. If a C°° curve is to turn a corner at a point m which is not simply
a reversal of direction (as with a cusp), then the derivatives of all orders of the
coordinate expressions must be 0 at m. For this to make sense, the tangent line
(in some coordinate system) must have two different limits upon approaching
m from opposite sides on the curve. Let µ be a coordinate map at m and
µ o y = (f', ., f°) the corresponding coordinate expression for the curve y,
and suppose yO = m. If all the derivatives of all the f' did not vanish at 0, then
there is one of least order which is nonzero, say, the nth derivative off I. The
limits of the slopes of the tangent lines to µ o y relative to the first coordinate
are

df' draft dnf'

dt din dtn

(0)

lim =
tt-0 dlim fi = df n ldft.o /

dt din din l )

Here the first equality follows from L'Hdpital's rule, the second from the
continuity of the nth derivatives and the nonvanishing of the nth derivative of
f'. This shows that the limit is the same from both sides of 0, contrary to the
condition that the curve turn a corner at m.

Problem 1.5.1. Specify a C°° parametrization of the polygonal curve in R2
with vertices (a,, b,), i = 0, 1, .., n.
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A continuous curve from p to q in M is a continuous map y: [a, b] --* M such
that ya = p, yb = q. There are many theorems of the sort " a continuous gadget
may be approximated by a C°° gadget." We illustrate this in the case of curves.

Proposition 1.5.1. If there is a continuous curve from p to q in M, then there is
a C °° curve from p to q in M.

Proof. Let y: [a, b] -). M be a continuous curve from p to q. At each yx
there is a coordinate system which may be cut down so that the coordinate
range in R° is an open ball. Since the range of y is compact, there are a finite
number of these coordinate neighborhoods which cover the range of y. Thus
we may choose a partition of [a, b], x0 = a < x1 < < 1 < b = x,,,
such that for every i, yx, and yx,+1 are in a common coordinate neighborhood.
The corresponding straight line in R° may be parametrized so that at each end
all the derivatives of the coordinates with respect to the parameter are zero,
similar to the way in which the sides of the square are parametrized in Example
(b) above. By translating the parameters of these segments so that they match
at each yx,, we get a C' parametrization for a curve from p to q which consists
of a finite number of pieces which are, as point sets, straight line segments in
terms of certain coordinates. The details are left as an exercise. Why did we
specify balls for the coordinate ranges? I

Proposition 1.5.2. If a C" manifold M is connected, then every pair of points
can be joined by a Cm curve. In particular, M is arc connected.

Proof. Recall that M is connected means that the only subsets of M which
are both open and closed are M itself and the empty set 0. Thus it suffices to
show that the points which can be joined top e M by a C°° curve form a set S
(obviously nonempty) which is both open and closed.

To show that S is closed we show that if {q,} is a sequence in S which con-
verges in M, then q = lim q, is in S. For any coordinate ball with center q there
must be infinitely many q, within that ball, so that by taking a curve from p to
one of these q, and chaining it to a segment (in the sense of the coordinates in
the ball) from the q, to q, and suitably altering the parametrization so it is C'
at the corner, we obtain a Cm curve from p to q. Thus S is closed.

On the other hand, if q e S, then there is a coordinate ball around q, and
any point in this coordinate ball may be joined to q by a segment, and then
to p by a C°° curve. Thus S contains the coordinate ball. Since each point of
S has a neighborhood contained in S, S is open. This shows that S = M, and
so every point in M can be joined top by a C°° curve.

Thus for manifolds we need not distinguish between connectedness and
arc connectedness. This is not true for topological subspaces of manifolds,
however.
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1.6. Tangents

It is intuitively clear that a C°° curve should generally have a well-defined
direction and speed. Of course, we have seen examples above in which a C`°
curve turns a sharp corner and thus could have no single direction at the
corner, but in those examples it will be found that the speed is zero at the
corner. However, in any case the speed will not be defined absolutely, because
there is no natural sense of distance on a manifold. The speed will be relative
to the speed of other curves having the same direction. The notion of the tan-
gent vector or velocity vector of a curve at a point is exactly this combination
of direction and speed and no more. What is required is a definition of tangent
vector which is operationally convenient and intuitively suggestive of the idea
of direction and speed. We propose that an operator on Cw functions, the one
which consists of taking the derivatives of all real-valued C`° functions along
the curve with respect to the parameter, meets these requirements. This is
similar to the operation of taking directional derivatives in R 3. In other words,
we claim that if we are told how fast we are crossing the level surfaces of
all functions, then we can determine the direction and speed of motion.
Indeed, we actually need have such information for one set of coordinate
functions only, but we avoid using this fact in our definition so as not to give
the appearance of preferring one coordinate system over another. Such
motivational arguments could be carried further and would lead us ultimately
to the definition of tangents given below.

For every m E M we denote by F°°(m) the collection of all Cm functions
f: U-> R, where U is an open submanifold of M containing m. The set of
functions F°°(m) has considerable algebraic structure If U, V are open sets
containing m and f : U -* R, g: V-* R, then we define

by

f+g: Un V---R and fg: Un V->R

(f + g)n =fn + gn and (fg)n = (fn)(gn).

In particular, for c c R we have the constant function c: M - R, cm = c for
every m. We have no notational distinction between c as a function and c as
a real number. The following are then clear. For every f c- F'(m), f + 0 = f,
If = f. We also define -f = (-1)f. The commutative, associative, and dis-
tributive laws, which are the usual algebraic properties of addition, subtraction,
and multiplication (but not division), are generally valid. However, since
equality of functions requires equality of their domains, we have some excep-
tions to customary algebra: f + (-f) and Of are not 0 but ratherf + (-f) =
Of = 01 , where f : U --> R. The function 01 u differs from 0 in that it is

defined only on U.
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A tangent at in e M is a function (operator)

t : F'(m) -+ R

such that for every f, g e Fm(m), a,b e R,
(a) t is linear: t(af + bg) = atf + big.
(b) t satisfies the product rule t(fg) _ (tf )gm + fm(tg).

[An operator on an algebraic system such as FI(m) which satisfies (a) and (b)
is called a derivation of the system. Thus a tangent at in e M is a derivation
of F°°(m).]

Other synonyms for "tangent" are "tangent vector," "vector," "contra-
variant vector," the latter being the classical tensor terminology.

The set of all tangents at in will be denoted Mm, called the tangent space
at in. We give Mm an algebraic structure, that of a vector space which is
studied in detail in Chapter 2, by defining addition, scalar multiplication, and
the zero. For s, t e Mm, a e R, we define

S+tEE Mm, as EMm,

by requiring for every f e F`°(m),

(s+t)f=sf+tf, (as)f=asf, Omf = 0.

It must be demonstrated that the things defined are in Mm, but these proofs
are automatic.

Proposition 1.6.1. For every t E Mm and constant function c c- F°°(m), tc = 0.

Proof. This follows from some simple computations using (a) and (b) with
the constant functions c and 1:

ctl = t(cl)
= (tc)1 + ctl

= tc + ct1.

Transposing ctl gives 0 = tc.

Proposition 1.6.2. If f,g E F0(m) coincide on some neighborhood U of in, then
for every t c- Mm, if = tg.

Proof. Let 1 be the function which is constantly I on U and not defined
elsewhere. Then the hypothesis on f and g can be written 1 Ef = 10g. By the
product rule

t(l f) = tiv fm + ]tf

t(1 ug)

tg,

since gm = fm. Hence if = tg. I
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If y is a Cm curve in M such that yc = m, we define ysc e Mm, the tangent
to y at c, by requiring for every f e Fm(m),

(Y*c)f =
df

du
y (c).

We must show that ysc actually is a tangent at m; that is, it satisfies (a) and
(b). For every f,g e Fm(m), a e R, we have

(f + g) ° yu = f(Yu) + g(Yu)
=(f°Y+g ° Y)u,

and similarly for fg and af, so we obtain

(f +g)oy=foY+goy, (/g) oy=Uoy)(goy), (af)oy=a(foy)
Rules (a) and (b) for y*c now follow by applying the corresponding rules for
d/du(c) to the functions f o y, g o y, and to a e R.

If c is an end of the interval on which y is defined, we use the appropriate
one-sided derivative, or we can replace y in the expression on the right in the
definition by any extension y to an open interval.

Problem 1.6.1. (a) Suppose y is a Cm curve such that ysc = Om. Let
yssc: F°(m) -* R be defined by

2(Yssc)f = d2 u2Y (c)

Show that yssc is a tangent at m.
(b) If ysc 0 Om, show that the formula for yssc in (a) does not define a

tangent at m.
If ysc = 0m, then yssc is called the second-order tangent to y at c.

Problem 1.6.2. (a) Show that there is a Cm function f: R -+ R such that
fu=1 iflul <1,
fu=0 iflul >2.

(b) If x' are coordinates at m such that x'm = 0 and they are defined for

I x1 I < 3/a, then g: M -- R defined by

_
Sn 0 otherwise, including n outside the x' domain,

(f(axln)f(ax2n)...f(axdn) if I x'nl < 3/a,

is Cm and the set on which it is nonzero can be made arbitrarily small by
proper choices of a.

(c) If h e Fm(m), then there is k: M --* R, a Cm function, such that h and k
coincide on some neighborhood of m.
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(d) Let F°°(M) be the real-valued C° functions defined on all of M. Show
that F°(m) may be replaced by Fm(M) in the definition of a tangent at m
without any essential change in the concept.

1.7. Coordinate Vector Fields

If, u = (x', ... , xd) is a coordinate system at in, then for f e F°°(m) there is a
coordinate expression for f, f ° F1-' = g: U -> R, where U is an open set in Rd.
As before [cf. (1.3.1) and (1.3.2)] we may also write f = g ° p. = g(x',..., xd).
The real-valued function g on U is Cm, hence has partial derivatives with re-
spect to the cartesian coordinates u° on Rd. These partial derivatives will in
turn be the coordinate expressions for some members of F°°(m), which we
define to be the partial derivatives off with respect to the x'. Specifically, the
definition is

a j =
of _ ag of ° µ -'
ax, C9 U, au,

Of the two notations, a, and a/ax', we use the simpler, a;, when only one
coordinate system is involved. On R2 and R3 we shall use 8X, a,,, az rather than
alax, alay, alaz or 8/au', a/au2, alau3. The domain of these partial derivatives
is the intersection of the domain off with the coordinate neighborhood.

When viewed as a function on functions,

a,: F°°(m) --. F°°(m)

satisfies properties much like a tangent at in, with appropriate modifications
considering that the values are in Fm(m), rather than in R. That is, for every
f, g e F`° (m), a, b e R,

(a) a,(af + bg) = a a, f + b a,g,
(b) a,(fg) = fa:g + ga,f

These are easy to verify, since we know that a/au' has the same properties. We
call the operators a, the coordinate vector fields of the coordinate system
(x1, .. , xd).

If application of a; is followed by evaluation at m, the result is a tangent at
m which we denote by 8,(m) E M. That is, a,(m)f = af(m) for every
f e The tangent at(m) is a tangent to the ith coordinate curve y, through
m, which is defined by

You = p-1(x'm, ..., x'-'m u xl+1m,
, xdm)
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If we let c = x'm, then for every f e Fm(m),

(Yi*c)f = d duy` (c)

=au(Of-µ 1(x1m,...,u,...,xdm)

= u'(µm)f°µ
= aJ(m)
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Thus we have that y,*c = 8,(m).
Besides thinking of &, as a function Fm(m) -* Fm(m) for every m in the

coordinate neighborhood V, we may also consider a, as a function V--*
{Mm I m e V}, assigning a tangent a,(m) at m to each m e V.

Problem 1.7.1. For each sequence of numbers a' a R, i = 1, ... , d, there is
a tangent at in,

d

t a' 0,(m) c- M,,.
t=1

Show that there is a Cm curve y with y0 = m such that y*O = t.

Problem 1.7.2. Verify that S,x' is the constant function
(0 ifi0j,S;=j`

1 ifi=j.
The function S; of two integers i and j is called the Kronecker delta. Thus if
t = I;=1 a' S,(m), show that tx' = a', so

d

t = (tx') ai(m).
4-1

Problem 1.7.3. If y is a Cm curve and x' coordinates at m = yc, show that
there are a' e R such that

d

Y*c = 2 a' ai(m).
1-1

We now show that the sort of tangent which Problems 1.7.1, 1.7.2, and
1.7.3 deal with is perfectly general, that is, the a,(m) form a basis for Mm. We
shall discuss the concept of a basis of any vector space in Chapter 2. We also
insert the result of Problem 1.7.2 in the following, which we call a theorem
rather than a proposition because it is used so frequently later on.



62 MANIFOLDS [Ch.1

Theorem 1.7.1. For every tangent t e M. there are unique constants a' such that

d

t = a' a,(m),

namely,
at = tx'.

Proof. It is convenient and no less general to assume xm = 0 for every i.
Indeed, if y' = x1 + b', b` constants, then a/ay' = a/ax'. To obtain the desired
result we need a first-order finite Taylor expansion for f E Fm(m), of a special
form. Specifically, we claim there are f' e Fm(m), i = 1, . , d, such that on
some neighborhood of m

d

f=fm+ xf.
4=2

Assuming for the moment that this expansion exists, the rest follows by easy
computations. Applying a,(m) to both sides of the above equation we get

d

ajf(m) = 0 + I [a;x'(m)f,m + x'm aff(m)]

= fm.

Having found what the fm are, we can now evaluate tf:

d

tf = t(fm) + t(x'f)
d

0+ [(tx')fm+x'mtf]
t_,

_ (tx') a1(m)f

where we have used the fact that t has value 0 on constants.
Since t and >,°n, (tx') a,(m) give the same result when applied to every

f c- Fm(m), they are equal. If t a' a,(m), then tx' =° a' a,x'(m) = a',
showing the a' are unique.

It remains to show the existence of the first-order Taylor expansion of the
form stated. This need only be done for the coordinate expression off, since
such Taylor expansions can be transferred back and forth by composition
with µ or µ-'. Thus if

d

g = a + u'g1,
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where a is constant, and g,g, E F"(0), 0 = (0, . ., 0) the origin in Rd, then

d

.f = g o 1i = a + (u` o Ogi o P
t=1

d

a + x`.f,
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defining f = g, a p.
It is convenient to introduce notation defining sum and scalar multiples in

Rd; that is, for p = (p1, ..., pd), q = (q1, , qd) a Rd, b e R define by =
(bpl,...,hpd)andp+q=(p1+q1,. ,p'+qd).

For g c F`°(0) there is a neighborhood U of 0 such that whenever p e U,
then g is defined on all by for 0 <_ b <_ 1; that is, g is defined on the segment
from 0 to p. We deal only with such p. Then by the chain rule,

d rrd eg du'(sp)
ds

g(SP)

au dst=1
d

au'P`.i=1

since u'(sp) = pis. By the fundamental theorem of calculus, hl = hO + f 1 ds ds

which, when applied to hs = g(sp), yields

r1 d agp = go + J > pt du (sp) ds
0 1=1

d

' f
8g

(sp) ds.
go +

i=1 o au

We define g,p = f o
du

(sp) A Then the formula just obtained is
rd

g = go + utgi,
s=1

valid on a neighborhood of 0.
To show that g, E F'(0), we invoke a theorem from advanced calculus:

If h(p, s) is a C' function of (p, s) E Rd r' and kp = f o h(p, s) ds, then k is C1
ak ah

and
ott'

(p) _ 10 em (p, s) ds. Repeated applications of this theorem and the

chain rule to functions of the form h an

(p' s) = eu'n
g

au'1
(sp) shows that

g, is C¢.

The a' are called the components of t = Z,d=1 a` a,(m) with respect to the
coordinates x'.



54 MANIFOLDS [Ch.1

Remarks. The Taylor expansion given is slightly different in nature when
C' functions are expanded, in that we can only assert that f, is Ck-1. This loss
of one degree of differentiability prevents us from using the same definition of
tangents for Ck manifolds, because axioms (a) and (b) will allow many opera-
tors which cannot be applied to Ck-1 functions and in particular are not of
the form a' a,(m). The resolution is to define tangents as being only those
which have this form; that is, the tangent space is spanned by the a,(m), or to
require that a tangent be the tangent to some Ck curve. Both processes lead
to the result we have achieved-that each tangent space MM is a vector space
of dimension d, the same dimension as M, and has bases given by the coor-
dinate vector fields.

For C°° manifolds we summarize the various equivalent ways of viewing
what tangents are.

(a) For our definition we have taken a tangent to be a real-valued derivation
of Ft(m); that is, t: Ft(m) -* R, satisfying (a) and (b) of Section 1.6.

(b) For any coordinate system (x') at m the tangent space at m consists, by
Theorem 1.7.1, of expressions of the form J°_, a' a,(m).

(c) The tangent space at m consists of tangents to C°° curves, where
yc = in, by (b) and Problem 1.7.3.

(d) The classical tensor definition of tangents (see Proposition 1.7.1) is
essentially the same as (b) combined with the rule for relating the components
with respect to different coordinate systems. The tangent, from this point of
view, is not considered to be an operator on functions but is rather the sequence
of components a' assigned to the coordinate system (x'). A formal definition
on these lines is quite formidable, since one must consider a tangent as being
a function which assigns to each coordinate system (x') at m the sequence a',
and satisfying the transformation law. In applications this definition is quite
convenient to use, and it also is the most obvious generalization of the defini-
tion of a tangent vector in R° as being a directed line segment. For these
reasons we do not anticipate that the classical definition will entirely disappear,
at least not very soon.

An immediate application of the formula in Theorem 1.7.1 is a version of
the chain rule for a manifold: For two coordinate systems (x') and (y'),

a d aXi a

ay' = ay' axi'

From this the law of transformation of tangents is obtained. If

t = I a' (m) b'
tz, ax ,e, ay
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then
d

at

To establish the equivalence of the classical definition, which incorporates
this law in its statement, and ours, the following proposition is offered.

Proposition 1.7.1. Let t be a function on the charts at m which assigns to each
such chart a sequence of d real numbers and such that if t(x') = (a'), t(y') = (b'),
then (a') and (b') are related by formula (1.7.1), for all pairs of charts (x') and
(y'). Then for all such pairs

at at (m) = b`
at

(m)
=1 ax ,-, ay

Problem 1.7.4. Show that the notation of partial derivatives is misleading in
the following way. If dimension M > 1, there are coordinates x' and y' such
that x1 = y' but for which a/ax' 56 a/ay'. Thus the coordinate vector a/axl
does not depend merely on the function x1 (as the notation might lead one to
believe) but also on the remaining functions x2, ..., xd. If x2, ..., xd are
changed, then a/axl may change even though x1 remains the same.

Problem 1.7.5. Show that for d > 1 the Taylor expansion is not unique. Also
show that there are higher-order expansions of the type used above.

1.8. Differential of a Map
Let us denote the union of all the tangent spaces to a manifold M by TM; that
is, TM is the collection of all tangents to m at all points m e M. In Chapter 3
we shall spell out a natural manifold structure for TM, which makes TM into
a manifold of dimension 2d on which the coordinates are, roughly, the d
coordinates of a system of M joined with the d components of a tangent with
respect to the coordinate vector basis. Then TM is called the tangent bundle
of M. However, for our purposes here it will be sufficient to regard TM as a
set.

Now suppose µ: M--* N is a Cm map. Then there is induced a map
µ,,: TM - . TN, called the differential of p. Alternative names for µ* are the
prolongation of µ to TM and the tangent map of µ. We shall give two definitions
and prove that they are the same.

(a) If t e TM, then t E M. for some inc M and there is a Cm curve y such
that y,,0 = t. Since y: R --* M and µ: M -> N, the composition µ o y: R - . N
is a Cm curve in N. We define

04 o y)*0. (1.8.1)



56 MANIFOLDS [Ch.1

This definition could conceivably depend on the choice of y, not just on t,
but we shall not show independence of choice directly, since it follows from
equivalence with the second definition.

(b) If t e TM, it is sufficient to say how µ*t e TN operates on Ft(n), where
n = µm and t e Mm. If f e Fm(n), we then have f ° µ e Fm(m), so the following
definition makes sense:

(P*t)f = t(f ° µ). (1.8.2)

With this definition it must be demonstrated that it is actually a tangent at
n; that is, it is a derivation of Fm(n). Again, this will follow from the proof of
equivalence, since we know that (µ ° y)*O is a tangent at µy0 = pm = n.

Proof of Equivalence. In the notation of (a) and (b) we have

[(,- ° Y)*O]f = du (0)f° (µ ° Y)]

= du (O)[(f ° Y) ° Y]

_ (Y*O)(f ° w)
= t(f° a).

Thus the right side of (1.8.1) applied to f is the same as the right side of (1.8.2).
Hence the two definitions agree.

Coordinate Expressions. In terms of components with respect to coordinate
vector fields, µ* is expressed by means of the jacobian matrix of µ. Suppose
that x', i = 1, .. , d, are coordinates at m and ya, a = 1, ..., e, are coordi-
nates at n = µm. Then in a neighborhood of in, p has the coordinate expression

J ° µ = fa(X', .., Xd).

If 1 e Mm, then we may write t = ; a' ai(m). Let b° = (µ*t) ya. Then from
Theorem 1.7.1 we have

µ*t = ba aya (n).
a>1

We evaluate ba by means of definition (1.8.2), since ya e F°°(n):

ba = (µ*t)Ya
= t (Ya ° µ)

d

a' ai(Ya ° µ)(m). (1.8.3)

The coefficients of the a' in this expression are arranged into a rectangular
e x d array, with a constant on rows and i constant on columns.

aly'°µ 02y1°µ ... adY'°µ

alye°IL ... adYe°µ
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This rectangular array is called the jacobian matrix of µ with respect to the
coordinates x' and y8. The formula for µ* in terms of coordinate components,
(1.8.3), is the matrix theory definition of the product of e x d matrix J by
d x 1 column matrix (a'), producing the e x 1 column matrix (ba).

Problem 1.8.1. Show that µ* is linear on Mm; that is, for s, t E M. and a c R:
(a) µ*(s + t) = (µ*s) + (µ*t).
(b) p*(at) = aµ*t.

Problem 1.8.2. If µ: M --* Nand T: N-* Pare Cm maps, prove the chain rule:

(T°µ)*=T*aµ*. (1.8.4)

By expressing (1.8.4) in terms of coordinates, justify the name "chain rule."

Special Cases. The cases for which M or N is R deserve additional mention,
since they concern the important notions of Cm curves and real-valued func-
tions, respectively. This special treatment is based on the fact that R has a
natural coordinate, the identity coordinate u, and hence a distinguished basis
for tangents at c, d/du(c), for every c c- R.

In the case M = R we have a curve y: R --+ N. To say what y. is it is suffi-
cient to say what it does to d/du(c), since the effect on other tangents a[d/du(c)]
is then known by linearity [(b) in Problem 1.8.1]. A curve in R for which the
tangent is d/du is the identity curve u: R-± R, so by definition (1.8.1),

Y* du (c) = (y ° u)*c

= y*c.

The latter expression is the previous definition, from Section 1.7, of the tan-
gent vector to the curve y, so our notation is in reasonably close agreement.

In the case N = R we have a real-valued Cm function f: M - R. If t E Mm
and c = fm, to say what f*t is we must find its component with respect to
basis d/du(c) of Rc. By Theorem 1.7.1,

f*t = a du (c),

where
a = (f*t)u

= t(u °f) by (1.8.2)

Thus

= tf.

f*t = (tf) u (c).
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We redefine the differential off: M -- R to be the component tf of f*t and
change the notation to

(df)t = tf. (1.8.5)

Thus df : TM --s R replaces f* : TM --# TR in our subsequent usage.
On each tangent space Mm, df: Mm -* R is a linear, real-valued function. In

Chapter 2 we define the dual space V* of a vector space V to be the collection
of all linear, real-valued functions on the vector space. In this terminology, the
differential of a real-valued function gives a member of the dual space M.* of
the tangent space M. for each in. For manifolds, the dual space Mn*, of Mm
is called the cotangent space at m, or the space of differentials at in, or, in the
classical terminology, the space of covariant vectors at in.

Problem 1.8.3. If x' are coordinates on M, f : M--> R, show that the classical
formula

a

df = a,fdx'

is a consequence of (1.8.5).

Problem 1.8.4. Show that dx', i = 1, ... , d is the dual basis to a,, i = 1, ... , d;
that is (see Section 2.7),

(dx') a, = 8!.

Problem 1.8.5. Let µ: R2 --> R2 be defined by µ = (x2 + 2y2, 3xy). Find the
matrix of µ* at (1, 1) with respect to coordinates x, y in each place. Use this to
evaluate

µ*(8x (1,1) + 3 y (1,1)1

by matrix multiplication.



CHAPTER 2
Tensor Algebra

2.1. Vector Spaces
In Chapter 1 we saw that the set of tangent vectors at a point m of a manifold
M has a certain algebraic structure. In this chapter we present and study this
structure abstractly, but it should be borne in mind that the tangent spaces of
manifolds are the principal examples.

A vector space or linear space V (over R) is a set with two operations,
addition, denoted by +, which assigns to each pair v, w e V, a third element,
v + w e V, and scalar multiplication, which assigns to each v e V and a e R
an element av a V, and having a distinguished element 0 e V such that the
following axioms are satisfied. These axioms hold for all v, w,x e V and all
a,beR.

(1) The commutative law for +: v + w = w + v.
(2) The associative law for +: (v + w) + x = v + (w + x).
(3) Existence of identity for + : v + 0 = v.
(4) Existence of negatives: There is -v such that v + (-v) = 0.
(5) a(v + w) = av + aw.
(6) (a + b)v = av + by.

(7) (ab)v = a(bv).

(8) IV = v.
The elements of V are called vectors. Not all the properties of the real

numbers are needed for the theory of vector spaces (only those called the
field axioms), so to allow easy generalization to other fields, the real numbers
are called scalars in this context. In particular, certain topics in the study of
real vector spaces are facilitated by an extension to the complex numbers as
scalars.

Axioms (2) and (7) justify the elimination of parentheses in the expres-
sions; that is, we define v + w + x = (v + w) + x and abv = (ab)v. Strictly

69
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speaking, the right sides of (5) and (6) also need parentheses, but there is only
one reasonable interpretation. We define v - w = v + (-w).

Remark. Formally, addition and scalar multiplication are functions
+: V x V-* Vand : R x V--- V.

We shall use freely the following propositions, the proofs of which are
automatic.

(a) If 0- E V is such that v + 0- = v for some v, then 0- = 0; that is, 0
is uniquely determined by its property (3).

(b) For every v e V, Ov = 0. In this equation the 0 on the left is the scalar 0,
the 0 on the right is the vector 0.

(c) If v + w = 0, then w = -v; that is, inverses are unique.
(d) For all v, w e V, there is a unique x e V such that v + x = w, namely,

x=w - V.
(e) For every a e R, aO = 0. In this equation both 0's are the vector 0.
(f) If aeR,vEV,and av=0,then either a=0eRor v=0eV.
(g) For every vE V, (-1)v = -v.

Problem 2.1.1. Let V = R x R and define

(a, b)+(c,d)(a+c,b+d),
c(a, b) _ (ca, b).

Show that all the axioms except (6) hold for V. What does this tell you about
the proof of (b)?

Example. Let V = Rd and define

(a', , ad) + (b', ... , bd) = (al + bl, , ad + bd),
c(a',... , ad) = (ca', . , cad).

Then Rd is a vector space. In particular, we have that R is a vector space
under the usual operations of addition and multiplication. The complex
numbers C may be viewed as R2 and the rules for addition and multiplication
of complex numbers by real numbers agree with the operations just given on
Rd in the case d = 2. Thus C is a vector space over R. If we allow multiplica-
tion by complex scalars, then C is a different vector space, this time over C
instead of R.

Problem 2.1.2. Show that the set of C°° functions F`°(M) on a Cm manifold
M form a vector space over R.

Problem 2.1.3. Let V be the first quadrant of R2, that is, V = {(x, y) I x >- 0
and y > 0}. With addition and scalar multiplication defined as in the example
above, how does V fail to be a vector space?
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Problem 2.1.4. Let R+ denote the set of positive real numbers. Define the
"sum" of two elements of R+ to be their product in the usual sense, and
scalar multiplication by elements of R to be : R x R+ - R+ given by
(r, p) = pr. With these operations show that R + is a vector space over R.

Direct Sums. If V and Ware vector spaces, then we construct a new vector
space from V x W by defining

(v, w)+(v',w')=(v+v',w+w'),
c(v, w) _ (cv, cw).

We denote this new vector space by V + W and call it the direct sum of
V and W. The operation of forming direct sums can be defined in an obvious
way for more than two summands. The summands need not be different.

Problem 2.1.5. Show that the example of Rd above is the d-fold direct sum
of R with itself.

2.2. Linear Independence

Let V be a vector space. A finite set of vectors, say v i ,-- . , vr, are linearly
dependent if there are scalars a', . . ., ar, not all zero, such that Yi=1 a'v, = 0.
An infinite set is linearly dependent if some finite subset is linearly dependent.
A set of vectors is linearly independent if it is not linearly dependent.

A sum of the form 1 a'v,, where v, e V and a' are scalars, is called a
linear combination of v1, ..., vr. If at least one a' is not zero, the linear combi-
nation is called nontrivial; the linear combination with all a' = 0 is called
trivial. Thus a set of vectors is linearly dependent iff there is a nontrivial linear
combination of the vectors which equals the zero vector. Other forms of the
definition of linear (in)dependence which are used are as follows.

Proposition 2.2.1. The following statements are equivalent to the set S being
linearly independent.

(a) The only 0 linear combination of vectors in S is trivial.
(b) If v, a S, then j;=1 a'v, = 0 implies a' = 0, i = 1, ..., r.
(c) If v, e S and a' are scalars, not all 0, then :Ej_, a'v, j4 0.
(d) If v, e S, a' are scalars, not all 0, then j; _ 1 a'v, = 0 leads to a contra-

diction.

Proposition 2.2.2. A set S is linearly dependent iff there are distinct vo, v1, ...
yr e S such that vo is a linear combination of v1, ..., vr.
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Proof. If S is linearly dependent, then there are vo, ..., v, e S and scalars
a°, ..., a', not all zero, such that J;=o a'vi = 0. Renumbering if necessary, we
may assume a° 0 0. Then vo = :E;=, (-a'/a°)v,.

Conversely, if vo, ... , v, e S and vo = i z l b'v,, then :E;
.. ° a`v, = 0, where

a° = 1, a' = -b', i = 1, ..., r are not all zero, so Sis linearly dependent. I

As simple consequences we note that two vectors are linearly dependent if
one is a multiple of the other; we cannot say each is a multiple of the other,
since one of them may be 0. If a set S includes 0, then it is linearly dependent
regardless of the remaining members. Geometrically, for vectors in R3, two
vectors are linearly dependent if they are parallel. Three vectors are linearly
dependent if they are parallel to a plane. Four vectors in R3 are always
linearly dependent.

The maximum number of linearly independent vectors in a vector space V
is called the dimension of V and is denoted dimR V. Of course, there may be
no finite maximum, in which case we write dimR V = oo; this means that for
every positive integer n there is a linearly independent subset of V having n
elements. (We shall not concern ourselves with refinements which deal with
orders of infinity.) If a vector space admits two distinct fields of scalars (for
example, a complex vector space may be considered to be a real vector space
also), then the dimension depends on the field in question. We indicate which
field is used by a subscript on "dim."

In particular, dimR V = 2 dime V, provided addition and scalar multi-
plication in V are the same and compatible with the inclusion R C C. How-
ever, this situation is exceptional for us, and when there is no danger of
confusion we shall write "dim V" for "dimR V."

Problem 2.2.1. If V is a vector space over both C and R, and S is a subset of
V linearly independent over C, show that the set S U IS, consisting of all
v e S and iv, where v e S, and thus having twice the number of elements as S,
is linearly independent over R.

Problem 2.2.2. Show that the dimension of Rd is at least d.

Problem 2.2.3. If S is a linearly independent subset of V, T a linear inde-
pendent subset of W, then the subset

Sx{0}U{0}x T={(v,0)1 vaS}v{(0,w)I waT)

of the direct sum V + W is linearly independent. Thus

dim V + W >- dim V + dim W.
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Problem 2.2.4. Let Fk be the vector space of all Ck functions defined on R.
Show that the subset of all exponential functions {e°" I a E R} is linearly
independent. Hint: Proceed by induction on the number of terms in a null
linear combination. Eliminate one term between such a sum and its derivative.

Closely related to the dimension, or maximum number of linearly inde-
pendent vectors, is the notion of a maximal linearly independent subset. A
set S is a maximal linearly independent subset or basis of a vector space V if
S is linearly independent and if for every v 0 S, S U {v} is linearly dependent.
By Proposition 2.2.2 this means that v is a linear combination of some vl, ...,
vk E S. Thus we have

Proposition 2.2.3. A subset S of V is a basis if:
(a) S is linearly independent.
(b) Every element of V is a linear combination of elements of S.

Remark. We mention without proof that a basis always exists. This is obvious
if dim V is finite but otherwise requires transfinite induction.

Proposition 2.2.4. If S is a basis, then the linear combination expressing v e V
in terms of elements of S is unique, except for the order of terms.

Proof. Suppose that v a V can be expressed in two ways as a linear com-
bination of elements of S. These two linear combinations will involve only
a finite number k of the members of S, say vl, ..., vk. Then the combinations
are

k k

v = a'v,, v = b'v,.

Thus

'=1 i=i

kv-v=0(a'-b')v,.
Since S is linearly independent, Proposition 2.2.1(b) yields a' - b' = 0,
i = 1, ..., k, that is, a' = b', as desired.

If S is a basis of V, then for each v e V the unique scalars occurring as
coefficients in the linear combination of elements of S expressing v are called
the components of v with respect to the basis S. We take the viewpoint that a
component of v is assigned to each element of S; however, only finitely many
components are nonzero.

Remark. In vector spaces only linear combinations with a finite number of
terms are defined, since no meaning has been given to limits and convergence.
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Vector spaces in which a notion of limit is defined and satisfies certain addi-
tional relations (pun intended) is called a topological vector space. When this
further structure is derived from a positive definite inner product, the space is
called a Hilbert space. We shall not consider vector spaces from a topological
viewpoint, even though in finite-dimensional real vector spaces the topology
is unique.

Problem 2.2.5. Prove: A subset S of V is a basis if every element of V can
be expressed uniquely as a linear combination of elements of S.

Proposition 2.2.5. If S is a linearly independent subset and T is a basis of V,
then there is a subset U of T such that S U U is a basis.

Proof. We prove this only in the case where dim V is finite.
Some member of T is not a linear combination of members of S, for other-

wise every v e V would be a linear combination of elements of T and hence,
by substitution, of elements of S, and S would already be a basis. Thus we
may adjoin an element v, of T to S, obtaining a larger linearly independent
set S, = S U {v,}. Continuing in this way k times we reach a point where all
members of T are linear combinations of elements of Sk = S U {v,, . ., vk},

which is then a basis by our first argument.
Note that U is not unique.

Proposition 2.2.6. All bases have the same number of elements, the dimension
of V.

Proof. Again, and for similar reasons, we assume dim V is finite.
Suppose S and Tare bases having k and d elements, respectively, and that

k < d = dim V. Let T = It,. ., td}. Then T, = {t2, ..., t,,} is not a basis so
there is s, c S such that {s,, t2, .. , td} is a basis. Similarly, {s,, t3, . ., td} is

not a basis, so there is s2 e S such that {s,, s2, t3, ... , td} is a basis. Con-
tinuing in this way we must exhaust S before we run out of members of T,
obtaining that S U {tk,,, . ., td} is a basis. This contradicts the fact that S
is a basis, since no set containing S properly can be linearly independent. I

Problem 2.2.6. In the above proof why is only one member of S needed to
fill out T, to give a basis? Why must a different member of S be taken at each
step?

Problem 2.2.7. Show that dim V + W = dim V + dim W. (Direct sum.)

Problem 2.2.8. Show that dim Rd = d.

Example. Let M be a d-dimensional C' manifold, m e M, and x', . , xd

coordinates at in. Then Theorem 1.7.1 says that tangents at m can be expressed
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uniquely as linear combinations of the a,(m). Thus the a,(m) are a basis of the
tangent space Mm. In particular, the dimensions of the tangent spaces to M
are all equal to d, the manifold dimension.

2.3. Summation Convention
At this point it is convenient to introduce the (Einstein) summation convention.
This makes it possible to indicate sums without dots (. . .) or a summation
symbol Thus ate, will be our new notation for Id=, ale,. The summation
symbols also will be omitted in double, triple, etc., sums when the sum index
occurs twice, usually once up and once down.

To use the summation convention it must be agreed upon beforehand what
letters of the alphabet are to be used as sum indices and through what range
they are to vary. We shall frequently use h, ..., n, p, . . ., v as sum indices and
the range will usually be the dimension of the basic vector space or manifold.

One effect of the sum convention is to make the chain rule for partial
derivatives have the appearance of a cancellation, as in the single-variable
case. Thus in the formula

a ayf a
ax' ax` ayf

it appears that "ay"" is being canceled. Another effect is to make it more
difficult to express some simple things, for example, one arbitrary term of a
sum a'ej. This difficulty usually occurs only in more mathematical (rather than
routine) arguments, and is handled either by using a previously agreed upon
nonsum index, say A, and merely writing aAeA, or by indicating the suppression
of the sum convention directly, for example,

ate, (i not summed).

In normal usage of the sum convention a sum index will not occur more than
twice in a term. When it does it usually means some error has been made. A
common error of this type occurs when indices are being substituted without
sufficient attention to detail, and usually produces an even number of occur-
rences of an index. In some cases it takes application of the distributive law
to put a formula in proper sum convention form. For example, a'(e, + f) has
three occurrences of i, but it is natural to write it as a'e, + a'f,, which makes
sense. Such undefined uses will be allowed as long as they are not so compli-
cated that they confuse.

To illustrate the use of the sum convention we discuss the relation between
two bases of a d-dimensional vector space V. Let {e,} and {f,} be two bases of
V. Then each e, has an expression in terms of the f, and vice versa,

e, = aif ,
ff =b,e;.
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The d2 numbers a, are customarily arranged in a square array, called the
d x d matrix of change from basis {f,} to basis {e,}, so that j is constant on
rows, i is constant on columns.t This arrangement is indicated by placing
parentheses on a(:

a, a2 ad

(at) =
al a; ... ad

Substituting fj = bjek in e, = a(fj we obtain

et = asbjek,

Comparing with the obvious formula e, = 8 ek and applying the
of components with respect to the basis {e,} we obtain

k= ka;bj S,
1

Similarly, by reversing e, and fj,

,ajk = Sk,.

ifi0k,
ifi=k.

When two matrices (a;) and (b{) are related by formulas (2.3.1) and (2.3.2),
they are called inverses of each other. Thus we have proved

Proposition 2.3.1. The two matrices of change from one basis of a vector space
to another and back are inverses of one another.

Now suppose that we have two d x d matrices (a() and (b;) which satisfy
one of the two relations above, say, (2.3.1). Let {e,} be any basis of V, a d-
dimensional vector space, and define d vectors f by f, = biej. Then by (2.3.1),

akf = akb(ej = Skej = ek.

That is, the e, can be expressed in terms of the f,. Since any v e V can be
expressed in terms of the e,, the same is true for the f,. All the f,, hence all
v e V, can be expressed in terms of a maximum number of linearly independent
f . In other words, the f, contain a basis. But they are d in number, so the f
are a basis, and (at) and (b;) are the change of basis matrices between {e,} and
{f}. Now the other relation (2.3.2) follows as before. We have proved a
theorem which in the following form is entirely about square matrices.

t The conventions of matrix algebra would then seem to call for viewing the e, and f, as
forming 1 x d rows and writing e, = fjal, but scalars customarily precede vectors.
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Proposition 2.3.2. Let (at) be a d x d matrix such that there is a d x d matrix
(b;) satisfying akbj' = S;. Then the matrices (a;) and (b;) are inverses of each
other; that is, b;ai = S,".

Problem 2.3.1. Evaluate 8,.

Problem 2.3.2. Show that the relation between components of a vector with
respect to two different bases is the reverse of the relation between the bases
themselves, both in the index of the matrix which is summed and in which
matrix is used in each direction.

Problem 2.3.3. If V is a finite-dimensional vector space of dimension d, show
that a subset S of V is a basis if (a) every v e V is a linear combination of
elements of S and (b) there are d elements in S.

2.4. Subspaces

A nonempty subset W of a vector space V is called a subspace of V if W is
closed under addition and scalar multiplication, that is, if w + x e W and
awe W for every w,x e W and a e R.

Problem 2.4.1. A subspace W of a vector space V is a vector space with
operations obtained by simply restricting the operations of V to W.

To make it clear that operations which make a subset a vector space need
not make it a subspace, Problem 2.1.4 gives an example of a subset R+ of R
which is not a subspace, but which has operations defined making it a vector
space. In fact, the reader should be able to show easily that the only subspaces
of R = R1 are the singleton subset {0} and all of R itself.

The proofs of the following are automatic.

Proposition 2.4.1. The intersection of any collection of subspaces is a subspace.

Proposition 2.4.2. If W is a subspace of V and E is a subset of W, then E is
linearly independent as a subset of the vector space W iff E is linearly inde-
pendent as a subset of the vector space V.

Proposition 2.4.3. If W is a subspace of V, then there exist bases of V of the
form E U F, where E is a basis of W.

(Choose a basis E of W and apply Proposition 2.2.5.)

Proposition 2.4.4. If W is a subspace of V, then dim W < dim V.
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Proposition 2.4.5. If S is any subset of a vector space V, then there is a unique
subspace W of V containing S and which is contained in any subspace containing
S, namely, W is the intersection of all subspaces containing S.

The minimal subspace containing a subset S, which is referred to in Proposi-
tion 2.4.5, is called the subspace spanned by S. We also say S spans W. In
particular, a basis of V spans V. Many of the propositions of Section 2.2 can be
abbreviated by proper use of this terminology.

Problem 2.4.2. If W is a subspace of V, then there is a subspace X of V such
that V is essentially the direct sum W + X. More precisely, every element of
v of V can be written uniquely as v = w + x, where w e W and x e X. The
complementary space X is not unique except in the cases where W is all of
V or W is 0 alone.

Geometrically, the subspaces of R3 are 0, the lines through 0, the planes
through 0, and R3 itself, of dimensions 0, 1, 2, and 3, respectively.

If W and X are subspaces of V, then the subspace spanned by W u X is
called the sum of W and X and is denoted W + X. Although the notation is
the same, "sum" is a broader notion than "direct sum." The sum W + X
is direct if W n X = 0. This differs slightly from our previous definition of
direct sum in that here W, X, and W + X are all parts of the given space V,
whereas before only W and X were given and their direct sum had to be
constructed by specifying a vector-space structure on W x X. If the sum is
direct in the new sense, then W + X may be naturally identified with the old
version of direct sum W x X by the correspondence (w, x) +-* w + x.

We leave the development of the elementary properties of the sum of
subspaces as problems.

Problem 2.4.3. The sum W + X consists of all sums of the form w + x,
where w e W and x e X. The decomposition of z e W + X as z = w + x is
unique if the sum is direct.

Problem 2.4.4. A basis E of V can be chosen so that it is a disjoint union
E=EouE,uE2uE3,where

Eo is a basis of W n X,
Eo u E, is a basis of W,
Eo U E2 is a basis of X,
EouE,uE2isabasis of W+ X.

Problem 2.4.5. If dim(W + X) is finite, then

dim(W + X) + dim(W n X) = dim W + dim X.
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2.5. Linear Functions
Let V and W be vector spaces and f : V -* W. We call f a linear function or
linear transformation of V into W if for all v1,v2 e V and a e R:

(a) f(v1 + V2) = fv1 + fv2.
(b) f(avl) = afvl.

A linear function f: V-* W is said to be an isomorphism of V onto W if f is
1-1 onto. The term isomorphism means that in terms of their properties as
vector spaces, V and W are not distinguishable even though vectors in V are
realized differently from those in W. In this case V and W are said to be
isomorphic and we write V -- W.

Problem 2.5.1. The zero of V is mapped into the zero of W by a linear
function f : V--.>. W.

Problem 2.5.2. If f : V -> W is an isomorphism, then dim V = dim W.

If f : V-* W is a linear function, then we call f V - W the image space of
f and f - 1{O} - V the null space off.

Problem 2.5.3. The image space and null space off: V-* W are subspaces
of W and V, respectively.

Problem 2.5.4. The linear function f : V -* W is 1-1 iff f - 1{0} = {O}.

Proposition 2.5.1. If f : V -- W is a linear function, then

dim V = dim f V + dim f- 1{O}.

Proof. Choose a basis E off' 1{O} and extend E to a basis E U E1 = E2 of V.
We claim that f is 1-1 on E1 and fE1 is a basis of fV. For the first fact, if
e1,e2 e El and fe1 = fee, then

f(e1 - e2) =f(e1 + [-e2])
= fe1 +f(-e2)
=fe1 +f[(-1)e2]
=fe1 + (-I)fe2
= fe1 - fee
= 0.

Thus el - e2 e f -1{0}. Hence el - e2 is a linear combination of elements of E,
but this contradicts the linear independence of E2.

If w e f V, then there is v e V such that w = fv. The expression for v in
terms of the basis E2 is

v=a;e,+b,ef,
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where e, e E and ej e E,. Then by the linearity off,

fv = b!fe!
4 !

=0+blfe,;

that is, fv is a linear combination of members of fE,, so fE, spans fV.
Finally, fE, is linearly independent. For if :Ej b,fe, = 0, then f(7-! be!) = 0,

and Li b!ej e f -1{0}. Hence 2i b,e, is a linear combination of elements of E,

b,ela,e,,
or

+ b!e, = 0.

Since E2 is linearly independent, all the coefficients are 0, so in particular
b! = 0 for all j.

Now we have

dim V = number of elements of E2 = N(E2)
= N(E) + N(E,)
= dimf-1{0} + dimfV.

Note that the statement and proof are valid if dim V = co, with the proper
interpretation. I

Corollary. If dim V = dim W and this dimension is finite, then the following
are equivalent.

(a) f : V --* W is an isomorphism.
(b) f is onto.
(c) f is 1-1.

Proposition 2.5.2. A linear function is uniquely determined by its values on
a basis. Given a set of values in 1-1 correspondence with the elements of a basis
of V, there is a unique linear function having these values as its values on the
basis.

Proof. Let f : V W be a linear function and {e,} a basis of V. We are to
show that f is determined by the values fe, e W. For any v e V we have the
unique coordinate expression v = a'e,; since f is linear,

fv = f(a'e,)
= ales.
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Thus fv depends on the values fe, as well as the a', which depend on v and the
e,. An alternative way of stating this result is that if g: V-* W is a linear
function such that get = fe, for all i, then gv = fv for all v e V.

On the other hand, given a set of vectors w, e W (the wt need not be linearly
independent, or nonzero; indeed, they may be all equal to each other), the
formula

fv = f(a'et)
= a'w,

defines a linear function. Indeed,

f(v+v)=f(a'e,+&e,)
=(a'+al)w,
=fv+f6,

f(av) = f(aa'e,)
= aatwt
= afv. I

Problem 2.5.5. If dim V = dim W, then V and W are isomorphic.

Remark. The isomorphism desired in Problem 2.5.5 is far from being
unique, depending on choices of bases of V and W. Occasionally, further
structure will give more conditions on an isomorphism, which will determine
it uniquely, as, for example, in the case of a finite-dimensional space and its
second dual (see Section 2.9). In such a situation we say that the isomorphism
is natural, as opposed to arbitrary.

2.6. Spaces of Linear Functions
The set of linear functions f, g.... of V into W forms a vector space which we
denote L(V, W). We define the sum of linear functions f and g by

(f+g)v=fv+gv
and the scalar product of a e R and f by

(af)v = a(fi)

for all v e V. It is trivial to verify that f + g and of are again linear functions
and that L(V, W) is a vector space under these operations.

We now examine what form linear functions and their operations take in
terms of components with respect to bases. Suppose that the dimensions are
finite, say dim W = d1 and dim V = d2, and that {e,} is a basis of V, {ea} is a
basis of W. The index a will be used as a sum index running from 1 to d1, and
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i will run from 1 to d2. For a linear function f : V -± W we may write the coor-
dinate expressions for fe, as

fei = ar ea. (2.6.1)

By Proposition 2.5.2, f determines and is uniquely determined by its basis
values a, ea, and hence by the matrix (a?) and the bases {e,} and {ea}. The
scalars a; are made into a d, x d2 matrix by arranging them in a rectangular
array with a constant on rows (a. is the row index) and i constant on columns
(i is the column index). We say that (a;) is the matrix off with respect to {e;}
and {ea}.

Just as we may think of the components of a vector with respect to a basis
as the coordinates of the vector, we may think of the entries of the matrix as
coordinates of the linear transformation. Thus a choice of bases gives coor-
dinatizations of V, W, and L(V, W), that is, 1-1 mappings onto Rd2, Rd', and
the set of d, x d2 matrices, respectively. The first two coordinatizations are
vector space isomorphisms, and it is natural to define a vector space structure
on the set of d, x d2 matrices so that the third coordinatization also be a
vector space isomorphism. It is easy to see that the definitions must be

(a;) + (b;) = (a; + ba), (2.6.2)
a(ai) = (aa1). (2.6.3)

Remark. We have previously encountered square matrices in expressing the
change of basis in a vector space (Section 2.3). Even in the case V = W these
are different uses of square matrices. It is common to confuse a matrix with
the object it coordinatizes, thus thinking of a matrix as being a basis change in
the one case and a linear function in the other case. A similar confusion is
frequently allowed between a vector and its coordinates. In either situation,
coordinate change or linear function action, we have two sets of scalars for
each vector: in the first case its coordinates with respect to each of two bases,
in the second case the coordinates with respect to a single basis of v and ft.
The two uses of coordinates are described as the alias and alibi viewpoints,
respectively.

A linear function can be described in terms of components and matrices.
That is, given the components of v e V, say v = v'e;, we write down the
formulas for the components of w = fv = waea. These formulas follow
directly from (2.6.1):

f(v'ei) = v'fe{
= v'aaeis
= waea.

So by uniqueness of components we have

wa = at v'. (2.6.4)
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These formulas are taken as the definition of multiplication of a d1 x d2
matrix A = (a;) and a d2 x 1 (column) matrix u = (v') to yield a d, x 1
(column) matrix w = (wa), indicated by

w = Au. (2.6.5)

Let us denote the isomorphism v -* u by E: V -+ R da, and, similarly,
w -> w by E: W -* Rd1. Then the relation between f and A is conveniently
expressed by means of the commutative diagram,

fV ! W

Raa. Rai

where by "commutative" we mean that the same result is obtained from
following either path indicated by arrows. In a formula this means

Eof=AoE. (2.6.6)

Since E and E are isomorphisms, they have inverses, so (2.6.6) may be solved
for f or A, giving formulas expressing Proposition 2.5.2 again.

f= E-1oAoE, (2.6.7)
A=EofoE-1. (2.6.8)

Since the matrix of a linear function f : V--* W consists of d,d2 scalars
which entirely determine f, and since any matrix determines a linear function,
we should expect that the dimension of the space L(V, W) of linear functions
of V into W is d1d2. That this is the case is given by the following.

Proposition 2.6.1. (a) If dim V = d2 and dim W = d,, then dim L(V, W) _
d,d2.

(b) If {e,} is a basis for V and {ea} a basis for W, then a basis for L(V, W)
is {E'}, where Ef is the linear function defined (see Proposition 2.5.2) by giving
its values on a basis as

EO'e, = Sies.

(c) If (fa) is the matrix off e L(V, W), then the expression for fin terms of
the basis {Es} is

f =faE}.

Proof. The EJ are linearly independent. For if afE,,f = 0, then

acEBe, = a5Siea = aBe, = 0,

and so by the linear independence of the ea, a; = 0 for a = 1, ..., d1 and
i= 1,...,d2.
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Since, by the definition of (fa),

and also
fei = J taea

ffEQe,=fa8iea

it follows that f = f,QEQ. Thus the EJ, also span L(V, W), so they are a basis.

Problem 2.6.1. Show that the matrix of E,91 is (S;Sa).

I

If V, W, and X are vector spaces with bases {e,}, { fa}, and {gA}, respectively,
and F: V-->- W and G: W-* X are linear functions, then Fei = Fi fa,
Gfa = Gaa gA, and

(G ° F)e, = G(Fi fa)

= FaG(fg)
= GAa tFagA

Thus the matrix of the composition G a F is the product of the matrices:

(GA (FP) _ (GAFi ).

The following propositions can be proved by manipulating the matrices as
well as the linear functions.

Proposition 2.6.2. Matrix multiplication is associative; that is, for matrices
A, B, C such that A(BC) exists, A(BC) = (AB)C.

Proof. A, B, C correspond to linear functions F, G, H and their products
correspond to the various compositions of F, G, H. Since (F o G) o H =
F o (G o H) for any functions, the corresponding formula for matrices is also
valid. I

Proposition 2.6.3. (a) If F, G: V -* W and H: W -* X are linear functions,
and A, B, C are the corresponding matrices with respect to some bases, then

Ho(F+G) = HoF+ HoG,
C(A + B) = CA + CB.

(b) Similarly, for linear functions F: V ->- W, G, H: W - X and their
matrices A, B, C,

(G + H)oF= GoF+ Ho F,
(C + B)A = CA + BA.

Proof. (a) For every v e V we have

H o (F + G)v = H(Fv + Gv)
= HFv + HGv
=(HoF+HoG)v.
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The proof for (b) is not much different. The formulas for the matrices follow
from the correspondence between matrices and linear functions.

2.7. Dual Space

The vector space L(V, R) is called the dual space of V. It is denoted V*.

Proposition 2.7.1. If dim V is finite, then dim V* = dim V.

This follows immediately from Proposition 2.6.1. However, if dim V is
infinite, then dim V* > dim V, provided the usual interpretation is given to
the meaning of inequalities between various orders of infinity. (Precisely, if
dim V is infinite, then there is a 1-1 correspondence between a basis of V and
a subset of a basis of V*, but it is impossible to have a 1-1 correspondence
between a basis of V* and all or any part of a basis of V.)

Henceforth, unless specifically denied, we shall assume that the vector spaces
we deal with have finite dimension.

There is a natural basis for R-the number 1. Thus, according to Proposition
2.6.1, for each basis {e,} of V there is a unique basis {e'} of V* such that

e'ej = S" (2.7.1)

The linear functions e4: V-* R defined by (2.7.1) are called the dual basis to
the basis {ei}.

Now suppose that {f} is another basis of V and that {gD'} is the dual basis
to the basis {f,}. Then by the definition of the dual basis we have

N`.fj = SJ. (2.7.2)

The f, are given in terms of the e, by a matrix (a;), and vice versa by the in-
verse matrix (b{):

f = a{ej, (2.7.3)
ej = bi fj. (2.7.4)

Then

efj = e'ajek
= ajkStk

at

(ak.pk)f = aksl

= aa.

Since e' and ak?k have the same values on the basis fj,

e' = ak k. (2.7.5)
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Hence also

91 ' = bkEk. (2.7.6)

The content of (2.7.3) to (2.7.6) may be expressed verbally as

Proposition 2.7.2. The matrix of change of dual bases is the inverse of the
matrix of change of bases. However, the sum takes place on rows in one case,
columns in the other.

2.8. Multilinear Functions
Let V1, V2, and W be vector spaces. A map f: V1 x V2 --)- W is called bilinear
if it is linear in each variable; that is,

f(av1 + d)1, v2) = a./ (U1, v2) + df(U1, v2),
! (v1, av2 + dv2) = of (Ul, v2) + aJ (vi, U2)

The extension of this definition to functions of more than two variables is
simple, and such functions are called multilinear functions. In the case of
r variables we sometimes use the more specific term r-linear, and the defining
relation is

f(v1, ... , av, + auf, ... , vT) = af(vl, .. , v{, ... , vT) + a! (Ul, .. , U1, ... , VT)-

Suppose that T E V* and 6 E W*; that is, T and 0 are linear real-valued
functions on V and W, respectively. Then we obtain a bilinear real-valued
function r ® 0: V x W-* R by the formula

r ® 0(v, w) = (rv)(0w).

This bilinear function is called the tensor product of T and 0, and we read it
"T tensor 0."

Multilinear functions may be multiplied by scalars and two multilinear
functions of the same kind (having the same domain and range space) may be
added, in each case resulting in a multilinear function of the same kind. Thus
the r-linear functions mapping V1 x V2 x x V, into W form a vector
space, which we denote L(V1i ..., VT; W).

Problem 2.8.1. Prove that tensor products r ® 0 E L(V, W; R), where r E V
and 0 E W, span L(V W; R). However, show that except in very special cases
L(V, W; R) does not consist entirely of tensor products r 0 0; that is, usually
there are members of L(V, W; R) which can only be expressed as sums of two
or more such T ® 0. Determine the special cases.
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2.9. Natural Pairing
If V is a vector space and r e V*, then by definition T is a function on V; that
is, TV is a function of the V-valued variable v. We can twist our viewpoint
around and consider v as a function of the V*-valued variable T, with value
TV again. When we take this latter viewpoint, v is a linear function on V* and
hence a member of V**. More precisely, v and the function TV of T are not
really the same, but we merely have a way of proceeding from v to an element
of V**. However, we choose to ignore the difference and regard V as being
included in V** by this change-of-viewpoint procedure. This identification of
V with part (or all) of V** is called the natural imbedding of V into V**; it
is natural because it only depends on the vector-space structure itself, not on
any choice of basis or other machinery.

Theorem 2.9.1. The natural imbedding of V into V** is an isomorphism of
V with V**.

Proof. For this proof we must distinguish between v e V and its natural
image in V**, which we shall denote 6 e V**. That is, 6T = TV defines
5: V* -> R for each v e V. The map v --* v is clearly linear. To show that it is
1-1 we only need show that if v = 0, then v = 0. Suppose v j4 0. Then v may
be included in a basis {e,}, with v = el. Let {e'} be the dual basis. Then
fel = elv = ele, = 1 # 0, so o 54 0 e V**. It follows from the Corollary to
Proposition 2.5.1 that V and V** are isomorphic under this mapping, since
their dimensions are the same by Proposition 2.7.1. 1

Remark. If dim V = oo, the natural imbedding is still 1-1 by the same
proof, but it is never onto V**, and so it is not an isomorphism.

Problem 2.9.1. Show that the dual basis to the dual basis to a basis {e,} is
simply the natural imbedding {e,} of {e,} into V**.

The two viewpoints contrasted above, considering TV first as a function
T of v, then as a function v of T are both asymmetric, giving preference to one
or the other of T and v. A third viewpoint now eliminates this asymmetry.
That is, we consider TV as being a function of two variables v and T, which
we shall denote

< , >: V x V*--* R,

defined by

<V, T> = TV.

The function < , > is called the natural pairing of V and V* into R. It is an
easy verification to show that < , > is bilinear.
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If {e,} is a basis of V, {e'} the dual basis, v = a'et, -r = bie', then

<v, T> = b,-'(ale,)
= ka%'
= beat,

Thus in terms of a basis and its dual basis, evaluating the natural pairing
consists in taking the sum of products of corresponding components. The
natural pairing is sometimes called the scalar product of vectors and dual
vectors.

2.10. Tensor Spaces
Let V be a vector space. The scalar-valued multilinear functions with variables
all in either V or V* are called tensors over V and the vector spaces they form
are called the tensor spaces over V. The numbers of variables from V* and V
are called the type numbers or degrees of the tensor, with the number of
variables from V* called the contravariant degree, the number of V the
covariant degree. Thus for a multilinear function on V* x V x V the type
is (1, 2).

We shall not need to consider distinctions between tensors of the same type
based on different orderings of the V* and V variables. In fact, we shall
generally agree to place all the V* variables before the V variables, so that
tensors which are functions on V x V* x V will be replaced by those defined
on V* x V x V. Sometimes it will be necessary to permute variables to
achieve the preferred order, in which case the order of the V* variables and
the order of the V variables must be retained. If there is some relation between
a tensor and the tensor with its V* variables (or V variables) permuted in a
certain fashion, then the tensor is said to have a symmetry property. Special
cases are discussed in Sections 2.15 to 2.19. Besides the main topics of these
sections see also Problems 2.16.6 and 2.17.4. A general study of symmetry
classes of tensors requires more group theory than we can give here.

The space of multilinear functions on V* x V x V is denoted

V ® V* ® V* = TZ(V).

The reversal of factors with *'s and without is intentional, and is explained by
the fact that it generali7cs the case of tensors of degree 1. In fact, by definition
V* consists of linear functions on V; by Theorem 2.9.1, V may be considered
to be the same as V**, the linear functions on V*. In general tensors of type
(r, s) form a vector space denoted by Ts = V ® ® V O V* O ® V*
(V: r times, V*: s times) and consist of multilinear functions on

V* x x V* X V x x V
(V*: r times, V: s times).
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A tensor of type (0,0) is defined to be a scalar, so To = R. A tensor of type
(1, 0) is sometimes called a contravariant vector and one of type (0, 1) a
covariant vector. A tensor of type (r, 0) is sometimes called a contravariant
tensor and one of type (0, s) is sometimes called a covariant tensor.

The notation introduced in Section 2.8 is consistent with what we have just
done. In fact, if v e V and r c V*, then v ®T e V® V*, for v® T was
defined to be a bilinear function on V* x V. However, as noted in Problem
2.8.1, the space V O V* does not consist merely of such tensor products
v ® T (except in a special case) but rather of sums of such terms.

2.11. Algebra of Tensors

As part of the vector space structure, we have that tensors of the same type
can be added and multiplied by scalars. Now we shall define the tensor product
of tensors of possibly different types. The tensor product of tensor A of type
(r, s) and tensor B of type (t, u) is a tensor A ® B of type (r + t, s + u)
defined, as a function on (V*)'+t x V'+", by

A ® B(-r1 r+t )

= A(T1, . ., Tr, vl, . ., Us)B(T'+1, Tr+t,
Us+1> + V3 +u).,

This generalizes the definition of v ® T given in Section 2.8.
The associative law and the distributive laws for tensor product are true

and easily verified. That is,

(A®B)®C=A®(B®C),
A®(B+C)=A®B+A®C,
(A+B)®C=A®C+B®C,

whenever the types of A, B, C are such that these formulas make sense.

Problem 2.11.1. If v, w e V are linearly independent, show that v ® w 0
w ® v. Hence the tensor product is not generally commutative.

2.12. Reinterpretations
Tensors generally admit several interpretations in addition to the definitive
one of being a multilinear function with values in R. For tensors arising in
applications or from mathematical structures it is rarely the case that the
multilinear function interpretation of a tensor is the most meaningful in a
physical or geometric sense. Thus it is important to be able to pass from one
interpretation to another. The number of interpretations increases rapidly
as a function of the degrees.



80 TENSOR ALGEBRA [Ch. 2

Let us first examine how such other interpretations are obtained for a tensor
A of type (1, 1). For a fixed T e V*, A(T, v) is a linear function of v e V. Let
us denote it by A1r E V* so that

<v, Alr> = A(r, v). (2.12.1)

Since A is bilinear, the function A1T is linear as a function of T, so we have a
linear function

Al: V*-* V*,T-sA1T.

Thus for each tensor of type (1, 1) we have a corresponding linear function
of V* into itself.

Conversely, if B: V* -* V* is a linear function, then we can define a tensor
A of type (1, 1) by

A(r, v) = <v, Br>.

This A is a tensor since B is linear and < , > is bilinear. It is easily seen that
B = A1, so that the procedure goes both ways.

Similarly, for a fixed v e V, A(r, v) is a linear function of r E V* which we
denote A2v e V** = V. Again we have

<A2v, r> = A(r, v),

and A2: V-. V is linear. Moreover, the converse is essentially the same;
that is, for each linear B: V -* V there is a unique A e Ti such that B =

These reinterpretations are natural since no choices were made to define
them. Thus we have

Theorem 2.12.1. The vector spaces Ti, L(V, V), and L(V*, V*) are naturally
isomorphic.

This natural isomorphism is also quite obvious in terms of components with
respect to bases. If {e,} is a basis of V, {d} the dual basis, then the d2 elements
e, ® eJ (d = dim V) form a basis for Ti. Indeed, if Al C T, let Ail = A(e4, e,).
Then A = AJe, 0 er by the following theorem, which generalizes Proposition
2.5.2.

Theorem 2.12.2. A tensor is determined by its values on a basis and its dual
basis. These values are the components of the tensor with respect to the tensor
products of basis and dual basis elements, which form bases of the tensor spaces.

Proof. Let A e T; and Alt e,,, ..., e;,). Then for any
Tl, ..., Tl C V* and v1, ..., v1 C V, we have
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TD = a;e', vq = baet, P = 1, . . ., r, q = 1, ..., s

A(r1, , T'> v1, ..., v,) =a'(,. ..aj,bil..bs'A(e'1, ..., e'" erl,..., e,,)
t,= al . a,1

= rl..b' br' Atl ...
r,it +

=Aii '1,<e,l, -'>...<e,,, -'><v,, e'l>...<v e'.>

=Are. "',e,1 ® ... 0e,,0ert ®...
r 1

Thus

A = A"..i:e,l0 ... ®e,,®erl® ... ®er'.

since they have the same values as functions on V*' x V.
The proof that the e,1 ®... ® e,, 0 ell ®... ® e4 are linearly independent

is left as an exercise.

Corollary. The dimension of T; is d'+'.

Now returning to tensors of type (1, 1), the coordinate form of the inter-
pretations is given in the following.

Theorem 2.12.3. If A = Ale, 0 er, a member of Ti, then the AJ are:

(a) The components of A as a member of T l with respect to the basis {e, 0 er}.
(b) The matrix entries of the matrix of Al with respect to the basis {e') of V*,

with i the column index, j the row index in (A;).
(c) The matrix entries of the matrix of A2 with respect to the basis {e,} of V,

with i the row index, j the column index in (A!).

Proof. Part (a) follows directly from the definition of components. For (b)
we have, by (2.12.1),

<e,, A1e'> = A(e', e,)

by Theorem 2.12.2. But if (B;) is the matrix of A1i then Ale' = Bkek, so

<ej, A1e'> = <er, Bkek>
BI k sr

=BB.

In this, i is the column index of (B;), hence also of (A;).
For (c) we have

<A2er, e') = Aj,

and if (C;) is the matrix of A2, A2er = C; e,, where j is the column index of
(C,) = (ADD. I
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In terms of a basis the action of A on V or V* may be viewed as a "partial
evaluation": For v = ale, c V,

A2v = (A;e, 0 ee')2v

Ajak(e, 0 ei)2ek
Alake,<ek, e')

= A 'jai j.

It is as though we evaluated v on the e' part and left the rest of A unaltered.
Similarly, for r c V*, T = b,e',

A1r = A;b,e'.

The way the indices are arranged makes this procedure practically automatic.

Problem 2.12.1. Since < , ) is a bilinear function on V x V* it is a tensor
of type (1, 1). What are the corresponding functions < , )1: V* ---)- V* and
< , )2: V-4. V? What are the components of < , )?

Higher degree tensors have other interpretations in an analogous way.
These other interpretations take the form of multilinear functions of V* and
V into tensor spaces. For example, a tensor A of type (I, 2) may be considered
as a map A2,3: V X V-a V. The subscripts 2 and 3 indicate that the variables
(v, w) of V x V become the 2nd and 3rd variables of A, leaving the 1st variable,
in V*, of A open. Thus each (v, w) E V x V yields a linear function on V*,
that is, a member of V** = V. In terms of coordinates it is again a partial
evaluation : If

A = A;ke, ® ei ® ek,

ht en

A2.3(c, K') = Al'k<v, e')<W, ek)e, c V.

The other interpretations of A E T2 are

A1,2: V* X V--* V*,
A1.3: V* x V-> V*,
A1: V* -> V* 0 V*,
A2:V-* V®V*,
A3: V- V® V*.

The range of, say, A2 may be viewed, as in Theorem 2.12.1, as L(V, V). Thus
A may be interpreted as an object which assigns linearly to each v E V a linear
transformation (A2v)2 of V into V. The matrix of (A2v)2 is (Ak <i1, e')), where
i is the row index, j the column index.

Problem 2.12.2. The components of a tensor product are the products of the
components of the factors. That is,

' g±..(A (9 1 = A1
it 1.+u i t Ia 1r+1 1.+u,
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Problem 2.12.3. What type of tensor can be interpreted as a multilinear map
V' --4- V?

2.13. Transformation Laws

The components of a tensor A are functions of the basis as well as the super-
script and subscript entries, the indices. The way which the components depend
on the basis is determined by the matrix of change of basis, its inverse, and
certain rules for using these matrices, which depend on the type of the tensor
and are called the transformation law for the tensor of that type.

We shall indicate the functional dependence of a tensor on the basis, when
more than one basis is being considered, by a superscript generically related
to the basis. Thus for a tensor of type (1, 2), the components with respect to
basis {et} and its dual {e'} will be denoted by Aik', and are given, according to
Theorem 2.12.2, by

e4Aik = A(--', ei, ek)

Note that we are using A as a function in two ways, once as a multilinear
function on V* x V x V, the other as a function of four variables: the basis
e and the three integer variables i, j, and k.

Now let {f} be another basis, {q'} its dual basis, which are related to the
first bases by

f = atiei,
9'=bje'.

The components of A with respect to the new basis are

Aik' = A(m',fi,fk)
4 m n

= A(l)me > aien, akDeD)

= en, e,)
4 m= bmainaIcAe.np

.

(2.13.1)

This equation is the classical law of transformation of the components of the
tensor of A of type (1, 2).

The alterations necessary for obtaining the laws for other types should be
obvious and will not be written out here.

If V is the tangent space at a point m of a manifold, V = Mm, and the bases
are obtained as coordinate vector fields with respect to two systems of coor-
dinates (x') and (y') at m, then
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a

8x
E = ax,

f =ay', T`=dy',
i ax' 4 _ ay

a` 8y''
b'

ax',

all evaluated at m. Then the transformation law (2.13.1) above has a form to
be found in most standard works:

Avk-t = Anp-m azOy'; y, ayk.

Problem 2.13.1. Let dim V = 3, A = e', where

2 0 1

(Ae';) = 0 3 -1
1 -1 0

(2.13.2)

let {fl = el + e2, f2 = 2e2i f3 = -e2 + e3} be a new basis and {(p'} the new
dual basis. Let v = -e1 + 2e3 and r = 5e' - 2e2 + e3.

(a) Evaluate A(r, v).
(b) Evaluate A2v,
(c) Evaluate Alr.
(d) Find the expression for the ip' in terms of the e'.
(e) Find the expressions for v and r in the new basis.
(f) Find the new components Al-1.
(g) Verify that det (A e.;) = det (A') and that tr (Ae-;) = tr (A i ). ["det"

abbreviates "determinant"; the trace of a matrix (A;) is the sum of the main
diagonal terms, tr (A';) = A;; see Section 2.14.] Note that is symmetric,

is not.
(h) Do parts (a), (b), and (c) over in terms of the new basis, showing that

the result is the same.

With respect to a given basis of V, we may simply speak of a tensor by
giving its components. In fact, this is the classical treatment of tensors. The
classical definition of a tensor is that it is a function of I + r + s variables,
that is the basis (or coordinate system) as one variable, r contravariant (upper)
indices, and s covariant (lower) indices, which satisfies the transformation law
of a tensor of type (r, s) for each pair of bases [that is, equation (2.13.2) when
r = I and s = 2). Then one would speak of "the tensor A'fk." Having the
variables i, j, and k as part of the symbol denoting the tensor A is comparable
to having the variable x as part of the symbol for a function f, as in f(x),
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which we have all seen. Practically, no harm is done, only the logic is slightly
strained.

Problem 2.13.2. If A is a tensor of type (1, I) and A has the same com-
ponents with respect to every basis, show that A is a multiple of < , >; that
is, Ar = a&j' for some a e R.

Problem 2.13.3. If A is a tensor of type (r, s) such that the components of
A are the same with respect to every basis, show that either A = 0 or r = s.

2.14. Invariants
Scalar-valued functions of tensors frequently are described in terms of the
components of the tensors with respect to a certain basis. If these values do not
depend on the basis employed, the functions are called invariants, or, more
precisely, scalar invariants. One may also speak of tensor invariants when the
values are tensors themselves rather than scalars.

As an illustration of these concepts we define an invariant of tensors of type
(1, 1), the trace, which is a well-known invariant of matrices. We have already
seen how these tensors may be considered as matrices. If A = Ale, ®e' we
define

trace of A = tr A = Al,

that is, the sum of the main diagonal elements of the matrix (A;). It is not
a priori evident that we have defined something which depends on A only,
since the A' depend not only on A but also on the basis {e,}. To show that
tr A is a number determined entirely by A itself and not by the e, as well, we
must show invariance; that is, if A is expressed in terms of another basis
{f,}, then the corresponding formula in the new components gives the same
number as before. Thus we write A = ej and show that
A' ; = Ae,. Using the same notation for change of basis as before, (2.7.3) to
(2.7.6), we have the transformation law

a = Ae.iajbAl.m j m lr
from which it follows that

A", = Ae.va(by = Ae.nbn = A.

We have proved

Proposition 2.14.1. The trace of a tensor of type (1, 1) is an invariant.

To show that not every expression in terms of the components of a tensor
need be an invariant, consider the following example. Suppose d = 2 and
consider

A=el ®el +e1®e2,
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a tensor of type (2, 0). The expression Af4 in this case is Ail + A22 =
1 + 0 = 1. Now consider the new basis given by e1 = f1 + fa and e2 = f2.
Then

A =(fi +fa)®(fi +fa)+(fi +fa)0fa
=fi®fi+2f1®fa+fa®fi+21a®fs,

from which we get A; = A11 + A'22 = 1 + 2 = 3.
When a quantity is defined without reference to a basis, there is no question

that it is an invariant. Sometimes this is difficult to do, and so one must
establish invariance. An invariant (basis-free) definition of the determinant
of a linear transformation A, det A, will be given below after we study ex-
terior algebra (2.19). The more common definitions of determinant are given
in terms of components, either by means of sums of products with signs
attached or inductively on the dimension by means of the rule for row or
column expansion. For these definitions invariance under change of basis is
another step beyond the definition. Indeed, one of the best procedures in
demonstrating invariance of the componentwise definitions is to establish
equivalence with the invariant definition from exterior algebra.

Besides invariants of one variable, we may also consider invariants of several
variables. An invariant is called linear or multilinear if it is linear in its variable
or each of its variables, as the case may be. Thus the dual space V* of a
vector space V may be described as the vector space of linear invariants on V.
Moreover, the tensors over V of type (r, s) are the (r + s)-linear invariants on
V*r x Vs. An invariant I is of degree p if it is a linear invariant of the p-fold
tensor product of the variable with itself, that is,

IA=J(A(9 ®A),
p times

where J is a linear invariant. The determinant is an invariant of degree d on
tensors of type (1, 1).

An important class of linear invariants are the contractions. These are not
real-valued invariants except in the case of the trace, which they generalize.
A contraction assigns to a tensor of type (r, s) another tensor of type
(r - 1, s - 1). They are essentially traces with respect to two of the indices,
one contravariant, one covariant, while the others are held fixed. The formal
definition follows.

The contraction of a tensor A of type (r, s) with respect to contravariant index
p (<r) and covariant index q (<_s) is the tensor of type (r - 1, s - 1) having
components

B41 4r-1 - All ip-1kio.. 4r-1
11 11-1 1i )q-1klq 1s-1*

Problem 2.14.1. Contractions are invariants.
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Problem 2.14.2. How many different contractions does a tensor of type
(3, 2) have?

Problem 2.14.3. Show that (tr A),, where A is a tensor of type (1, 1), is an
invariant of A of degree p. [The fact that it is an invariant follows from the
fact that tr A is an invariant. The question is whether (tr A)2 is a linear function
of the coefficients of A 0 A, etc.]

Problem 2.14.4. Show that the product of two d x d matrices is a bilinear
invariant of the two matrices, all viewed as tensors of type (1, 1). (One way of
doing this is to show that the matrix product is a contraction of the tensor
product. Tensor product of two tensors was given an invariant definition, and
its bilinearity is expressed in part by the distributive laws.)

2.15. Symmetric Tensors
A tensor A is symmetric in the pth and qth contravariant indices if the com-
ponents with respect to every basis are unchanged when these indices are
interchanged. A tensor A is symmetric in the pth and qth variables if its values
as a multilinear function are unchanged when these variables are interchanged.
(Of course, the two variables interchanged must be of the same type.)

Theorem 2.15.1. The following three conditions on a tensor A are equivalent.

(a) A is symmetric in the pth and qth contravariant indices.
(b) A is symmetric in the pth and qth variables.
(c) The components of A with respect to some single basis are unchanged

when the pth and qth contravariant indices are interchanged.

Proof. First of all, we note that (c) is obviously a special case of (a) and,
moreover, since components are obtained by substituting basis elements for
the variables in A as a multilinear function, (a) is a special case of (b). Thus it
suffices to show that (c) has (b) as a consequence. For simplicity we let p = 1,
q = 2, and A be of type (3, 1). Then by (c) we have that there is a basis {et}
such that for every i, j, k, and m,

Atik = Aitk
M m

Then for any r , T2,T3 E V* and v e V, with components r10 r2t, 7,3j, and vI,

respectively, we have

A(7-1, T2, T3, V) = A(T1tet, T21E1, vmem)

= T14T21T3kvmA(e , e1, Ek, em)
m

T11T2173kUmA ilk

T21TltT3kUmA /tk

m

= A(T2, T1, 73, v).

by following the previous steps backward with pairs i, j and 1, 2 transposed. I
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Since this theorem shows there is no difference, we shall abandon the dis-
tinction between indicial and variable symmetry, and refer to the property by
the first name only. In our terminology we have relied upon our agreement to
place variables from V* before those from V. Thus in defining the correspond-
ing concept for covariant indices, symmetry in the pth and qth covariant
indices will be equivalent to symmetry in the (r + p)th and (r + q)th variables.
Obviously the analogous theorem holds for covariant indices.

A tensor is symmetric in its contravariant indices or contravariant symmetric
if it is symmetric in every pair of contravariant indices, and similarly for
covariant symmetric. A tensor is symmetric if it is both contravariant sym-
metric and covariant symmetric, although this concept is usually limited to
purely contravariant [type (r, 0) for some r] or purely covariant [type (0, s)
for some s] tensors. By convention (or a strict logical interpretation of the
definition) we agree that tensors of degree 0 or I are symmetric.

It is not possible to have an invariant definition of symmetry in one contra-
variant and one covariant index. The example of Problem 2.13.1 shows that
symmetry in mixed indices is not invariant under change of basis. The follow-
ing problem shows how restrictive such symmetry is.

Problem 2.15.1. If a tensor A of type (1, 1) is symmetric in its indices with
respect to every basis, that is, A' = A;, then A is a multiple of the identity
tensor, Al = aS'f.

2.16. Symmetric Algebra

The symmetric tensors of type (r, 0) form a subspace Sr of To ; those of type
(0, s) form a subspace S, of TO. In general, a symmetric tensor is given by the
components A'1 ',, where i1 < <_ i,; the other components are given by
symmetry, and symmetry gives no relations among the components with
nondecreasing indices. Thus one basis of S' is obtained by letting basis ele-
ments be those for which all these special components are 0 except one, which
we let be 1.

The product of two symmetric tensors is not usually symmetric. For example,
if A = A''e, ® ej and B = B'fe, ® of are symmetric tensors of type (2, 0),
A ® B is not generally a symmetric tensor of type (4, 0). Indeed, A'JBk' need
not equal A'kB2'. To define a multiplication of symmetric tensors which results
in a symmetric tensor, we first define a symmetrization operation A --> A,
given by the formula

A,(T', T') = 1 A(r'i, ..., r") (2.16.1)
(tl, t.)
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where the sum is taken over the r! permutations of the integers 1, ..., r. Here
A is a tensor of type (r, 0) and T', . ., r' are any elements in V*. The r' need
not be all different, so in case two or more are identical some of the permuta-
tions will not change the sequence.

It is easily checked that A, is a symmetric tensor of type (r, 0). For example,
when r = 3,

A,(a, B, y) = *[A(a, P, y) + A(f3, y, a) + A(y, a, P) (2.16.2)
+ A(R, a, y) + A(a, y, fl) + A(y, fl, a)].

Problem 2.16.1. Write out the formula for A. analogous to (2.16.2) in the
cases r=2andr=4.

Problem 2.16.2. Show that the components of A, are given in terms of the
components of A by a formula similar to (2.16.1).

Problem 2.16.3. Let s(d, r) be the dimension of S', the space of symmetric
tensors over a vector space of dimension d. From the above remarks s(d, r) is
the number of different choices of r integers i1, . ., i, such that

for each a. Show that
1 :5 ia5ia+1<_d

(a) s(1, r) = 1, s(d, 1) = d.
(b) s(d + 1, r) = s(d, r) + s(d + 1, r - 1).

(c) s(d, r) _ \d + r - 1
r

_ (d + r - 1)!/[r!(d - 1)!],

the binomial coefficient.

Problem 2.16.4. If A is symmetric then A. = A.

The symmetric product of symmetric tensors A e S' and Be S q is the
symmetric tensor (A 0 B), e SD+4. We denote this product by AB. For
example,

e1e1 = (e1 ® e1), = -1(e1 ® el + el (3 e1) = el ®el,
e1e2 = (e1 ® e2)5 = - (e1 ® e2 + e2 ® e1) = e2e1,

(e1e2)e3 = }(e1 ® e2 + e2 ® e1)e3
= J(e1 ® e2 ® e3)3 + -(e2 ® el (9 e3):
=*(e1®e2®e3+e1®e3®e2+e2®e1®e3

+e2®e3®e1+e3®e1(9 e2+e3®e2®el)
= e1(e2e3) = e1(e3e2) _ ...,
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In general, symmetric multiplication is

(a) Commutative: AB = BA.
(b) Associative: (AB)C = A(BC).
(c) Distributive: (A + B)C = AC + BC.

By means of the commutative, associative, and distributive laws of sym-
metric multiplication, any symmetric tensor may be expressed as a sum of
terms of the form c(el)',(e2)"a...(e,)°a, where {e,} is a basis of V and c E R.
In other words, a symmetric tensor may be expressed as a polynomial in d
indeterminates, and symmetric multiplication is the same as multiplication of
polynomials. In working with symmetric tensors it is much more convenient
to use symmetric product notation and its properties than the ® notation.

The following theorem is stated without proof, except for the case r = 2,
which is important for the relation between bilinear and quadratic forms
discussed in Section 2.21.

Theorem 2.16.1. For every A E To, A. is the unique symmetric tensor such that
for every T E V*,

A,(T, ..., T) = A(r, ..., r). (2.16.3)

Remarks. It is clear that (2.16.3) is true, since the sum (2.16.1) has r! identical
terms when r' = r for each i, but what is not evident is that (2 16.3) determines
A, completely. For the case r = 2 the determination of A, by (2.16.3) is given
by (2.21.1) and (2.21.2), letting b = A,. If (2.16.3) had been used as the
definition of A then besides verifying that such an A, exists we would have to
check that it was unique.

The polynomial obtained from a symmetric tensor A of type (r, 0) is homo-
geneous of degree r; that is, the sum of the exponents of the e, is r for every
term. The scalar-valued functions P on V* given in the form

PT = A(T,. , r),

where A is a tensor of type (r, 0), are called homogeneous polynomial functions
of degree r on V*. (They are identical with the scalar invariants on V* of
degree r, as defined in Section 2 14.) A polynomial function on V* is a sum of
such P with different degrees. The polynomial functions are therefore in 1-1
correspondence with sums of symmetric tensors of different contravariant
degrees.

Problem 2.16.5. Applying Theorem 2.16.1, prove the commutative, associa-
tive, and distributive laws for symmetric multiplication.
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Problem 2.16.6. Let A be a tensor of type (0, 3) having the "symmetries"
A,ik + A,k, + Ak{1 = 0 and A,;k = -Alkr. If d = 3, find how many com-
ponents of A are independent, choose an independent set, and express the
others in terms of the chosen ones.

2.17. Skew-Symmetric Tensors

The definitions of skew-symmetry in tensors follow those for symmetry
except that interchange of a pair of indices or variables changes the sign of the
tensor instead of leaving it unchanged. The following theorem is the analogue
of Theorem 2.15.1 and the proof is practically the same.

Theorem 2.17.1. The following three conditions on a tensor A are equivalent:

(a) A is skew-symmetric in the pth and qth contravariant indices.
(b) A is skew-symmetric in the pth and qth variables.
(c) The components of A with respect to some single basis are changed in

sign only when the pth and qth contravariant indices are interchanged.

However, for skew-symmetric tensors a further characterization is possible,
as follows.

Theorem 2.17.2. The tensor A is skew-symmetric in contravariant indices
p and q iff for all T e V*, insertion of r for both the pth and qth variables of
A gives the value 0 irrespective of the remaining variable values:

A(a1 a'-1 T a' 01°-2, T aq-1 v v) = 0,

for all a1,TEV*, v1CV.

Proof. We give the proof for A of type (3, 1) with p = I and q = 2. The
proof in the other cases is not essentially different.

If A is skew-symmetric in contravariant indices 1 and 2 then A(T, T, a, v) _
-A(T, r, a, v) by interchanging variables 1 and 2, so by transposing and
dividing by 2, we get A(T, T, a, v) = 0.

On the other hand, if A gives 0 whenever variables 1 and 2 are equal, then

0 = A(a + P, a + fl, y, v)
= A(a, a, y, v) + A(a, f, y, v) + A(8, a, y, v) + A(8, P, y, v)
= 0 + A(a, f, y, v) + A(ff, a, y, v),

so

A(a, f4, y, v) = -A(f4, a, y, v). I
Problem 2.17.1. If a tensor A of type (3, 0) is symmetric in variables 1 and 2
and skew-symmetric in variables I and 3, then A = 0.
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Problem 2.17.2 (cf. Problem 2.15.1). If a tensor A of type (1, 1) is skew-
symmetric in its two indices for every choice of basis, then A = 0. Thus skew-
symmetry in mixed indices is no more sensible than symmetry.

Problem 2.17.3. Let A be a tensor of type (r, 0) which is skew-symmetric in
all pairs of variables; that is, A is skew-symmetric. If r', .. , T' C- V* are
linearly dependent, show that A(r1, ..., T') = 0.

Problem 2.17.4. Let A be a tensor of type (0, 4) which satisfies the following
symmetries (these are the symmetries of a riemannian curvature tensor;
see Section 5.11):

(1) Allkl = -Ajlkl
(2) Avkl = -Avlk
(3) Aukl + AIk11 + Ail,k = 0.

[Equation (3) is called the cyclic sum identity of a curvature tensor.]

(a) Show that A satisfies the following symmetry also:

(4) Aljkl = Akli1
(b) IfA(v,w,v,w) = 0 for all v and we V, then A = 0.
(c) If B and C are tensors of type (0, 4) satisfying the symmetries (1), (2),

and (3) and if B(v, w, v, w) = C(v, w, v, w) for all v and w e V, then B = C.
(Hint: Let A = B - C.)

Problem 2.17.5. Let B be a symmetric tensor of type (0, 2). Define a tensor
A of type (0, 4) by

Allkl = Blk81l - B*IB,k

(a) Show that A satisfies the symmetries (1), (2), and (3) of the curvature
tensor, given in Problem 2.17.4.

(b) If B(v, r) > 0 whenever v 5A 0, show that A(v, w, v, w) > 0 whenever
v and w are linearly independent. Note that

A(v, w, v, w) = B(v, v)B(w, w) - B(v, w)2.

Problem 2.17.6. If A is skew-symmetric in some pair of variables, show that
A,=0.

2.18. Exterior Algebra

The analogue of symmetric multiplication of symmetric tensors for skew-
symmetric tensors is called the exterior (or: alternating, Grassmann, wedge)
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product, and the resulting algebra is called exterior (Grassmann) algebra. The
symbol for this product is a wedge, A, and we employ this symbol to denote
the space of skew-symmetric tensors of type (r, 0), A' V. The skew-symmetric
tensor space of type (0, s) is denoted by A' V.

In general, A e A' V is given by its components Ai where
11 < 12 < . < I,.

Such increasing sequences are in 1-1 correspondence with the partitions of the
first d integers into two parts with r andand d - r members. The number of such

partitions is the binomial coefficient 1 d). From this, or directly (cf. Problem

2.17.3), it is evident that dim A' V = 0 if r > d; that is, only the 0 tensor is
skew-symmetric for degrees greater than d. Moreover, we have the following.

(ti),
Theorem 2.18.1. The dimension of A' V is where d = dim V.

If j1, ..., j, is a permutation of i1,. .., i, the component Aft " of a skew-
symmetric tensor is either the same or the negative of A'1 'r. A permutation
of symbols may be obtained from a sequence of transpositions (interchanges
of pairs). This can be done in many ways. For a given permutation, the num-
ber of transpositions is either even or odd, in which case we say that the
sign of the permutation is 1 or -1, respectively, and denote this by sgn IT, the
sign of the permutation 7r. For example, if the symbols are 1, 2, 3 and it is re-
quired to put them in the order 3, 1, 2, then we use the abbreviation (3, 1, 2)
for the permutation and write sgn(3, 1, 2) = 1, since this permutation requires
2 or 4, etc., transpositions: (1, 2, 3) - (1, 3, 2) -* (3, 1, 2) or (1, 2, 3) -->
(2, 1, 3) -> (2, 3, 1) -> (3, 2, 1) -> (3, 1, 2). Skew-symmetry may then be ex-
pressed by the requirement that permutation of the variables (indices) has the
effect of multiplying the tensor values (components) by the sign of the
permutation.

Problem 2.18.1. If Tr = (i1i ..., i,) is a permutation of (1, ..., r), define
the number of inversions of it to be sir = s1 + s2 + +s where sQ =
the number of i8 such that S < a and i$ > i.. Thus s1 = 0, since there are
no P < 1, and in general, sa < a. Show that

(a) If 7T differs from µ by the transposition of two adjacent indices, then
sir differs from sµ by I or -1.

(b) If iQ and is have k indices between them, the transposition of iQ and ie
can be accomplished by a sequence of 2k + I transpositions of adjacent
indices.

(c) If 7T differs from µ by a transposition of i. and it which have k indices
between them, then sir - sµ is an odd integer of magnitude _< 2k + 1.
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(d) If n and (1, ..., r) are placed one above the other and equal symbols
are joined by line segments, then the number of intersecting pairs of segments

(4, 1, 3, 2)
is s,.. For example has four intersections and

(1, 2, 3, 4)
s(4,1,3,2)=0+ I + I +2=4.

The alternating operator A -* A. is a linear function T° ->A' V*, for each s,
which assigns to each tensor its skew-symmetric part, using a formula similar
to the symmetrizing operator except for signs. For v,.... , v, e V we define

A0(V,, ... , v,) = 1 sgn(i,,... , i,)A(u, , ... , vt,), (2.18.1)
S. (t3. . .t.)

where the sum runs over all s! permutations of (1, . ., s). It is easily checked
that A. is skew-symmetric. There is an obvious version for contravariant
tensors as well. If A is already skew-symmetric, then A = A0.

The exterior product is now defined by the formula

AA B = (A 0 B)0,

where A and B are skew-symmetric covariant (or contravariant) tensors. It
has the following properties.

(a) Associativity. (A A B) A C= A A (B A Q.
(b) Anticommutativity. If A is of degree p and B is of degree q, then

AAB = (-1)"BA A.

In particular, for all a,# E V*, a A $ _ -P A a.
(c) Distributivity. (A + B) A C = AA C + BA C.

The reader is asked to check these properties, at least in special cases.
In working with skew-symmetric tensors it is much more convenient to use

the exterior product notation and its properties rather than regressing to a
use of the tensor product symbol 0.

If {e{} is a basis of V*, then a basis of As V* is given by {et= A A 61,
where il, . . ., is are arbitrary increasing sequences; that is,

l :5 il<...<is <d.
For d = 3, the dimensions of A° V*, A' V*, A2 V*, and A3 V* are 1, 3, 3,

and 1, respectively. Since A' V* and A2 V* have the same dimension, it is
possible to choose an isomorphism between them; we shall see later how such
an isomorphism arises naturally as a consequence of an inner product struc-
ture (Section 2.22). In fact, if e', e2, e3 is a basis of V*, then e2 A e3, e3 A e',
e' A e2 is a basis of A2 V*, and we let them correspond in this order. That is,
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we make the correspondence e" e' A c' if (i, j, k) is an even permutation of
(1, 2, 3). When the wedge product is compounded with this isomorphism we
get an operation just like the vector product in euclidean space. Indeed,

a,e' A b,E' = (a2b3 - a3b2)e2 A E3 + (a3b1 - alb3)e3 A el + (a1b2 - a2b1)e' A e2

fe1 e2 e3

4 > det al a2 a3 .

bl b2 b3

Note that a,bj - a;b, are the components of the vector product of the vectors
a,e' and bid. Recall, however, that the vector product is defined in a euclidean
vector space, that is, when the concept of a length is given in addition to the
vector space structure. In particular, the e' must be orthogonal unit vectors
with the correct orientation.

It is only when d is 3 that the wedge product corresponds to the vector
product, that is, to the product of vectors which yields a vector of the same

type. For when d j4 3, dim A2 V = (2) = d(d - 1)/2 d. In spite of this

the wedge product, insofar as integration theory (see Chapter 4) is concerned,
is the proper generalization of the vector product.

Problem 2.18.2. For -r e V*, 0 e A2 V *, v, w, x e V show that

TA 0(v, w, x) _ [r(v)O(w, x) + T(w)0(x, V) + T(x)0(v, w)]/3.

Problem 2.18.3. Find the symmetric and skew-symmetric parts of

A=el0el®e2+e3®el® el.

Must you know that el, e2, and e3 are linearly independent? Is A the sum of
its symmetric and skew-symmetric parts?

Problem 2.18.4. A set vl, , v, in V is linearly independent iff
V1A...AVD O.

Problem 2.18.5. If {e,) is a basis, d > 4, then the vectors 3e1 + e2 + 2e3 + 2e4,
4e1 + 5e2 + 7e3 + e4, and -2et + 3e2 + 3e3 - 3e4 are linearly dependent.

Problem 2.18.6. If v c V, v 0 0, and f e A9 V, then vAf = 0 iff there is
9 e A° -' V such that f = VA g. (Hint: Use a basis such that v = el.)
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Problem 2.18.7. (Cartan's Lemma). Let {e,), i = I, ..., d, be a basis of V,
and let v, e V, i = 1, ..., p such that J'_1 e,A v, = 0. Then there are scalars
A,, such that

v, _ A,fe, and
=1

A,f=A,,.

A tensor A E A" V is called decomposable if there are v,, ... , v,, e V such
that A = v1 A A V.. Otherwise A is called indecomposable.

Problem 2.18.8. If dim V <_ 3, then every A e A° V is decomposable. If
dim V > 3 and {e,} is a basis, then e1 A e2 + e3 A e, is indecomposable.

Problem 2.18.9. If A e A2 V, then A is decomposable if A A A = 0, or
equivalently, iff for all i, jl, j2i and j3,

A'JIA1213 - A"2Af113 + Ai13Ai1'2 = 0.

Problem 2.18.10. A G A3 V is decomposable if

A'1i2f1Af2f3f4 - A'1'2f2Af1f3f4 + A'1'2f3Aflf2f4 - A`1`214Af1f2f3 = 0.

Problem 2.18.11. Generalize Problem 2.18.10 to the case A e A" V.

Problem 2.18.12. All A e A ° -1 V are decomposable.

Problem 2.18.13. This collection of facts concerns the relation between sub-
spaces of V and exterior algebra. Grassmann originally founded the subject
because of these facts and a desire to study the structure of subspaces.

(a) If W is a p-dimensional subspace of V, then A" W is a one-dimensional
subspace of decomposable elements of AD V.

(b) If Y is a one-dimensional subspace of AD V consisting only of decom-
posable elements, then Y = A" W for some p-dimensional subspace W of V.

Let W and X be subspaces of V of dimensions p and q, respectively,
wEAP W, xe/\Q X, w # 0, x 0 0.

(c) X - W if there is a decomposable y such that w = xAy. What
freedom of choice is there for y?

(d) X0 W= 0 iff WAX 0 O.

(e) If X r) W = 0, then WAX is a basis of An*a (W + X).
(f) W={vjveVandvAw=0}.

Problem 2.18.14. Let B be a tensor of type (0, 4) such that for every v, w e V,

B(v, w, v, w) = -B(w, v, v, w) = -B(v, W, W, t).
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(a) If v A w = x A y, then B(v, w, v, w) = B(x, y, x, y).
(b) Is B necessarily skew-symmetric in the first two variables?

Problem 2.18.15. When acting on To the symmetric and alternating operators
are linear transformations .So V: To -- To, and thus may be regarded as
tensors, .9 Qf e T.

(a) Find the components of Y, da T2 with respect to a basis and show
that they are the same with respect to every basis.

(b) If C e T2 is a tensor such that the components of C are the same with
respect to every basis, show that there are scalars a, fi such that C = a.? + P.W.

2.19. Determinants

The reason for the use of exterior algebra in integration theory is the built-in
determinant-producing feature which makes the appearance of the jacobian
of a transformation (the jacobian determinant) automatic. We state this in
the form of a theorem. But first we need a preliminary remark.

If W is a one-dimensional vector space, then a linear transformation of W
into W is equivalent to multiplication by a scalar. Indeed, the matrix is a
1 x 1 matrix, obviously the same as a scalar. We wish to apply this to the
one-dimensional space ^° V, where dim V = d.

If A: V-* V is a linear function, then a homomorphic extension of A to
skew-symmetric tensor spaces is a linear function A: A' V- n° V, for each
p, such that

A(v1 A . A v,) = Av1 A A Av, (2.19.1)

for all v1, ... , v, a V. Let Au = a for « e A° V = R. (Note that we have not
distinguished between A and its extension notationally.)

Theorem 2.19.1. For each linear function A : V -* V there is a unique homo-
morphic extension.

Proof. Let {e,} be a basis of V. For it < < i we define

A(e,, n ... A e,,) = Ae,, n ... A Ae,p (2.19.2)

and extend A uniquely to A" V by linearity, a la Proposition 2.5.2. It is clear
that (2.19.2) follows from (2.19.1), so that the homomorphic extension must
certainly be unique and equal to the one we have defined. However, we have
not shown existence, since that requires the satisfaction of (2.19.1) for all
vectors v,, not just some special e,. For such arbitrary v, we let v, = a(e;.
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Then by the properties of the wedge product (the distributive and associative
laws),

v,n.. Av,=all, .al,e,,A...Aer,,

Note that in this sum we do not have j, < < j,, or even j. f if a g.

If we group the terms and use anticommutativity we would get the components
of v1 A A v, with respect to the basis {e,, A A e,, I it < < i,} of AP V.
However, this is unnecessary, since we can use (2.19.2) and the linearity of A
to show directly how to evaluate A on e,, n A e;,. Indeed, by linearity,
since AO = 0, we have the cases where some jd = jd, a 0 f, since then
e;, A A e;, = 0 and Ae;, n A Ae;, = 0. For the case where the jd are dis-
tinct, the same permutation it is required on the indices of e;, A A e,, as on

Ae;, A A Ae, to produce the increasing order, say i,, ..., i,, in which case

A(et, A ... A e,,) = A(±e,, A ... A e,,)
_

Ae,, A A Ae,,

Here the + sign is used if 7r is even, the - sign if Tr is odd. This extension of
(2.19.2) to the case of arbitrary i1, ... i, now combines with linearity to give
(2.19.1):

A ... A e.,)
= ail...aDDAej,A...AAei,
= (Aailej,) A ... A (Aaa°Q5,)
= AV,A ... AAv.. I

Remark. The above definition and theorem can be easily modified for the
more general linear function A: V --i- W.

Theorem 2.19.2. Let A : V -- V be linear. Then the restriction of the homo-
morphic extension of A to nd V consists of multiplying by the determinant the

matrix of A with respect to any basis. In particular, the determinant of the
matrix of a tensor A of type (1, 1) is an invariant.

Proof. Let {e,} be a basis of V. Then el A A ed is a basis of Ad V, so that
what we claim is

A(e, A A ed) = det (A )e1 A A ed,

where Ae, = A e,. Thus since A is homomorphic,

A(e, n A ed) = Ae1 n A Aed
= Al, e,, A ... A Add e,,,
= Ai... Adde,, n ... A e,d.
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This sum has d4 terms. However, each term having two of the if's the same may
be dropped, since then e,, A A e,, = 0. In the other terms, one for each
permutation (i,, ..., id) of (1, . . ., d), the factors of e,, n ... A e,, may be
transposed, getting a - sign for each transposition, until they appear in the
order el, . . ., ea. The total sign produced is sgn (i,, ..., ia). Hence the factor
multiplying e, A ... A ea is

Ail ... AQa sgn (i,, ... , i4), (2.19.3)
01....4d)

that is, the determinant of (As). I

Problem 2.19.1. (a) Show that the coefficient of e2 A ... A ea inA(ea A ... A ea)
is the minor of (As) obtained by deleting the first row and column and taking
the determinant.

(b) Obtain the column expansion of det (A!) on the first column by consider-
ing the formula

A(e, A ... A ea) = Ae, A A(ea A - - A ed).

The determinant of a linear function A: V - - V is the determinant of any of
its matrices: det A = det (A,').

Corollary 1. (a) Let A and B be linear functions V -* V. Then del (A o B) _
det A det B, where A o B is the linear function given by (A o B)v = A(Bv).

(b) The determinant of the product of two square matrices is the product of
their determinants.

Proof. (a) Apply B to e e Aa V and then apply A to the result. Thus

A o Be = A (det B)e
= (det B)Ae
= (det B)(det A)e.

But by the theorem A o Be = (det A o B)e, so det A o B = det A det B.
The second part, (b), is left as an exercise.

Problem 2.19.2. In the proof of Corollary 1 it was assumed that the homo-
morphic extension of a composition is the composition of the homomorphic
extensions. Find which step of the proof uses this and prove it.

Corollary 2. If we regard the determinant of a matrix to be a function of the
columns C, = (Ak),..., Cd = (A'a), that is, det (Ai) = f(C,,.. , Cd), then f is
determined by the properties
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(a) f is d-linear.
(b) If the same column occurs twice the f-value is 0, or, equivalently, if two

columns are interchanged the sign of the f-value is changed.
(c) The f-value of the identity matrix (S;) is 1.

Proof. Consider the columns as members of the vector space R. Then (a)
and (b) say that f is a skew-symmetric tensor of type (0, d) over R, f c AaRa*
But AdRd* is one-dimensional, so f is determined by its component with
respect to any basis, a single scalar. Hence, by (c), f is uniquely determined. I

Problem 2.19.3. If A: V--> V, then A may also be interpreted as a linear
function A*: V* -+ V*. Indeed, A* may be defined by <Av, r> _ <v, A*T>
for all v e V and T a V*. Using (2.19.3) or otherwise, show that det A* _
det A.

A* is called the dual of A. Other names in common use are the adjoint and
the transpose of A.

2.20. Bilinear Forms
A bilinear form on V is a tensor of type (0, 2), that is, a bilinear function
b: V x V -+ R. According to Section 2.12, such a form may be interpreted
in two ways as a linear function, b,: V-* V* or b2: V-* V*. Specifically, if
{e,} is a basis of V, {e'} the dual basis, b = b,,e' ® e', and v = vte, a V, then

blv = b,,<v, et>e'

_ (buv`)e',
and

b2v = bt,et<v, e'>

In classical language, the operation of passing from v e V, with components
vt, to b,v a V*, with components v, = b,;v', is called lowering the index of v by
means of the bilinear form b. This operation does not make much sense unless
the indices can be raised again, that is, unless the function b, has an inverse.

If b, has an inverse, then b is called nondegenerate.
Other means of describing this important property are given in the following

proposition.

Proposition 2.20.1. A bilinear form b is nondegenerate iff

(a) For every v a V, v i4 0, there is some w a V such that b(v, w) = 0, or
(b) the matrix of components (b;) is nonsingular, that is, has an inverse

matrix and/or determinant (b,,) 54 0, or
(c) b2 has an inverse.
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Proof. The matrix of b1: V--* V* with respect to bases {e,} and {e'} is

the matrix of b2 is the transpose of that of b1. From these facts we get
the equivalence of nondegeneracy, (b), and (c).

If bl is nondegenerate, then for every v e V, v 54 0, we have b,v 0 0. Hence
there is w e V such that <w, blv> 0; that is, b(v, w) 0. Thus (a) holds.

Conversely, if (a) holds, then for every v e V, v 0 0, there is some w e V
such that <w, blv> = b(v, w) j4 0, so we must have blv 34 0. Thus b, maps
nonzero elements into nonzero elements, and hence is an isomorphism
because dim V = dim V*. I

We shall not be concerned much with general bilinear forms, only with
symmetric and skew-symmetric ones. Let us note, however, that every bilinear
form b may be written uniquely as a sum of a symmetric and a skew-symmetric
one. So we have b = b, + ba, where

b.(v, w) = [b(v, w) + b(w, v)]12,
ba(v, w) = [b(v, w) - b(w, v)]/2.

Problem 2.20.1. Show that the determinant of (b,1) is not an invariant of b,
although the property of that determinant being nonzero, and indeed, either
positive or negative, is invariant.

Problem 2.20.2. Show by example that b, aqd b. can both be degenerate even
though b is nondegenerate.

Problem 2.20.3. If (b") is the matrix inverse to (b,;), show that the inverse to
the operation of lowering indices by means of b is given by of -> b"v,. The
indices of any tensor may be raised or lowered by means of b. Show that if the
indices of b" are lowered the result is b,,.

2.21. Quadratic Forms
A quadratic form on Visa quadratic invariant, that is, an invariant of degree 2,
with variable in V, or, what is the same, a quadratic polynomial function on V.

To every quadratic form q there is an associated symmetric bilinear form b,
defined by

b(v, w) = [q(v + w) - qv - qw]/2. (2.21.1)

Conversely, to every symmetric bilinear form b there is an associated quadratic
form q, defined by

qv = b(v, v). (2.21.2)

Problem 2.21.1. Show that each of the formulas (2.21.1) and (2.21.2) may be
derived from the other.
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In terms of a basis {e'} of V*, q is given by qv = a;,<v, e')<v, e'>, where
ail = ai, a R, or we may simply write

q = aue{ei,

where e'ei is to be considered as a product of real-valued functions on V. On
the other hand, if we view e'ei as the symmetric product of the covariant
vectors e' and ei then a formula with the same appearance gives the associated
bilinear form b:

b = atie{ei

= laii(e4 ® ei)s

= Zaii(ei ® ei + fi ® et)
=a,,e'®ei,

since all = ai,.
A quadratic form q is positive definite if qv > 0 for every v 0 0. We then

say that b is positive definite also. A familiar example is the dot product in
three-dimensional euclidean vector space:

q(ai + bj + ck) = a 2 + b 2 + c2.

With respect to the standard unit orthogonal basis i, j, k, the matrix is

(S,i), the identity matrix.
A quadratic form q is:

(a) Negative definite if qv < 0 for every v 0 0.
(b) Definite if q is either positive or negative definite.
(c) Positive semidefnite if qv >_ 0 for every v.
(d) Negative semidefinite if qv 5 0 for every v,
(e) Semidefinite if q is either positive or negative semidefinite.

The same terms are used for symmetric bilinear forms and for their com-
ponent matrices, the definitions being given in terms of the associated quad-
ratic form.

A nondegenerate symmetric bilinear form is called an inner product; some-
times this term is also taken to mean positive definite as well.

Proposition 2.21.1. A definite bilinear form is nondegenerate.

Proof. For every v j4 0, b(v, v) 0 0, so there is w, namely, w = v such
that b(v, w) 0. Thus by Proposition 2.20.1(a), b is nondegenerate.

Examples. On R2 we have the following quadratic forms:

(a) Positive definite: q(x, y) = x2 + y2.
(b) Negative definite: q(x, y) _ -x2 + xy - y2.
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(c) Nondegenerate, indefinite: q(x, y) = xy = J[(x + y)2 - (x - y)2], or
q(x, y) = x2 - y2.

(d) Positive semidefinite, degenerate: &, y) = x2.

Problem 2.21.2. Show that a nondegenerate semidefinite form is definite.

We say that v, w c V are orthogonal (perpendicular) with respect to b if
b(v, w) = 0. If v is orthogonal to itself, that is, if b(v, v) = 0, then v is called a
null vector of b. If b is definite, then the only null vector is 0. The converse is
true by the following.

Proposition 2.21.2. If b is not definite, then there is a nonzero null vector.

Proof. Since b is not positive definite, there is some v 0 0 such that
b(v, v) 5 0. Similarly, there is a vector w 96 0 such that b(w, w) >t 0, since b
is not negative definite. Consider the vectors of the form

z=av+(I - a)w,
where 0 < a < 1. These vectors are all nonzero unless v and w are linearly
dependent, in which case v = flw, so then b(v, v) _ Y(22 b(w, w) >- 0 and hence
b(v, v) = 0. Otherwise

b(z, z) = a2b(v, v) + 2a(1 - a)b(v, w) + (1 - a)2b(w, w)

is a continuous function of a having values b(w, w) 2: 0 when a = 0 and
b(v, v) 5 0 when a = 1, so there is some a for which b(z, z) = 0.

In a three-dimensional euclidean vector space, i, j, k form an orthonormal
basis, that is, a set of mutually orthogonal vectors, each of unit length. The
existence and use of such a basis leads to many computational simplifications.
We ask, naturally, whether such a basis exists relative to a symmetric bilinear
form b on an arbitrary vector space V of dimension d: that is, does there exist
a basis {e,} of V such that b(e,, e,) = S,!? Actually, this is a little too much to
ask, and, in fact, implies that b is positive definite. To cover all cases we must
allow a more general normal form, and accordingly give the following
definition.

A basis {e,} of V is orthonormal with respect to b if (a) for i j, b(e,, e,) = 0
and (b) each b(e,, e;) (not summed on i) is one of the three values 1, -1, and 0.

The values b(e,, e,) are called the diagonal terms of b and when the other
components of b are all 0, b is said to be diagonal with respect to the basis
{e,}. A process for finding such bases is called diagonalization. In terms of such
an orthonormal basis the associated quadratic form q assigns to v a sum and
difference of squares of the components of v:

qv = b(e,, e,)(v')2.
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Thus the procedures for finding orthonormal bases are also called reducing
a quadratic form to a sum and difference of squares.

In terms of an orthonormal basis the interpretation of b as a function
b1 = b2: V-->. V* assumes as simple a component form as possible, since its
matrix is (b(e,, e5)). What this means is that if {e'} is the dual basis to an
orthonormal basis {e,}, then b1e, = either e', -e', or 0, depending on the value
of b(e,, e,). The relation b1 = bz follows from the symmetry of b. The converse
is also true: If b1e, = either e', -e', or 0, then {e,} is an orthonormal basis.

The main theorem of this section is the existence of an orthonormal basis.
In the case of a positive (or negative) definite form an alternative proof in the
form of an explicit diagonalization procedure, the Gram-Schmidt process, is
also given.

Theorem 2.21.1. For every bilinear form b on V there is an orthogonal basis.
The numbers of positive, negative, and zero diagonal components with respect to
any orthonormal basis are the same, and hence are invariants of b.

Proof. This will proceed by induction on d, the dimension of V. If d = 1,
then either b = 0 and we take any basis for the orthonormal basis, or
b = b(fi,fi) 0 for some f1 e V. We let el = (I/\/Ib,,J)fi and an easy
computation shows that b(e,, e1) _ ± 1.

Now suppose that every symmetric bilinear form on d - 1 or less dimen-
sional vector spaces has an orthonormal basis, and that we are given b on a
d-dimensional space V. If b = 0, then any basis of V is orthonormal. If b 0,

then we claim there is a vector v e V such that b(v, v) j4 0. For indeed, there
are vectors v, w e V such that b(v, w) 0 0, and if both b(v, v) = 0 and
b(w, w) = 0, then

b(v + w, v + w) = b(v, v) + 2b(v, w) + b(w, w)
= 2b(v, w) 96 0.

Accordingly, let v e V be such that a = b(v, v) # 0 and define ed = (1 \/jaj)v,
so that b(ed, ed) ± 1.

Now let W = vl = {w e V I b(v, w) = 0}, that is, the set of all vectors
orthogonal to v, called "v perp." Then W is a subspace, for if a e R, w,, w2 a W,
then

b(v, awl) = ab(v, w1) = aO = 0,
b(v, w1 + w,) = b(v, w1) + b(v, w2) = 0 + 0 = 0,

so awl e W and w1 + w, a W. Moreover, W s V, since v 0 W. Hence
dim W < d and since the restriction of b to W is a symmetric bilinear form,
our induction hypothesis gives a basis e1, ..., ek of W such that b(e,, et)
a,S,,, where each a, = 1, -1, or 0, i, j = 1, ..., k.
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We claim that k = d - 1 and e,, . ., ea is an orthonormal basis of V. The
fact that el, . . , ek, ea are orthonormal is clear from the construction, since
b(e,, ea) = 0 for i < d because e, a W. It remains to show that {ej is a
basis of V, for which it suffices to show they span V, since their number is
k + I <_ d. Let x e V, a = b(ea, ed)b(x, ea), and v = flea. Then

b(x - aea, v) = fl(b(x, ea) - ab(ea, ea)]
= Pb(x, ea)(l - b(ea, ea)a)
= 0,

since b(ea, ea)a = 1. Thus x - ae4 a W, so that there are at such that
x = 2;_, a'e, + aea. This shows that {et} spans V.

To show that the numbers of positive, negative, and zero diagonal com-
ponents b(e,, e,) = a, are invariants of b, not depending on the choice of
orthonormal basis, we give invariant characterizations of them.

(a) The number of a, = 0 is the dimension of the subspace

N={wIb(v,w)=0forallveV},
the null space of b. Indeed the corresponding et are a basis of N: If w e N,
w = w'e,, then 0 = b(e,, w) = atw' (not summed on i), so w' = 0 whenever
at 0 0; that is, w is a linear combination of those e, for which at = 0. Con-
versely, if at = 0, then e, a N.

(b) The number of a, = 1 is the dimension of a maximal positive definite
subspace for b. Such subspaces are not unique unless b is positive definite or
negative semidefinite, but among all the subspaces on which b is positive
definite there must be some which have the largest dimension. Let W be such
a subspace, {e,} an orthonormal basis which is numbered so that a, _ =
ak = 1, at 5 0 for i > k, and let X be the subspace spanned by e,, ..., ek.
Then for any v e X, v = vte,, where v' = 0 for i > k, and we have

k

b(v, v) _ (v')2,
t=1

which is positive unless v = 0. Thus b is positive definite on X, and by the
choice of W, dim W >_ dim X = k.

Now define a function A: W -> X as follows. For w e W, w = w'et, let
Aw = :E;_, w'e,. It is easily checked that A is linear. Suppose we have Aw = 0;
that is, w' = 0 for i 5 k. Then

b(w, w) =b(wte,, w'e,)

a

(wt)aa,
f=k+l

<0
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since a, 5 0 for i > k. Since b is positive definite on W, w = 0. Thus the onl:
vector annihilated by A is 0, which proves that A is an isomorphism of N
into X. Hence dim W 5 dim X. Combining this with the previous inequalit:
shows that dim W = k, as desired.

(c) The number of a, = -1 is the dimension of a maximal negative de
finite subspace for b. The proof is the same as (b) except for obvious modifi
cations.

The number of a, = 0, that is, the dimension of the null space N of b, i
called the nullity of b. The number of a, = -1 is called the index of b. If I i
the index of b, d - dim N - 21 is called the signature of b. The signatur
is the difference between the number of a, = I and the index.

In the proof by induction of the existence of an orthonormal basis, there i
implicitly given a step-by-step construction of such a basis which may b
actually carried out if the components of b with respect to some nonortho
normal basis {f,} are given. This construction is easier in the definite cas
since we do not encounter, at each step, the problem of finding some v sucl
that b(v, v) # 0. If b is definite, any v will do, say v = fd. However, we stir
must compute somehow the subspace W = vl at each stage; that is, we mus
find a basis for W. For this the formula x - aed e W can be applied t,
x = f,, i < d, to give a basis of W. This is essentially the Gram-Schmia
orthonormalization process, which in practice is carried out as follows, sup
posing that b is positive definite and {f,} is a basis of V.

Let

g1 =fl,
g2 = 2 - [NA, 9014911 901911

gs

=f
- [b(f,, gr)lb(gi, g,)]g,.

These g, are mutually orthogonal and linearly independent since the f ca
be expressed in terms of them. The final step is simply to normalize them:

e, = a,g;, where 1/a, = -,/b(g,, g,)

The advantage of waiting until the last step to normalize is that the taking c
roots is delayed. Thus, if the b(f,, f) are all rational numbers, the whol
process is carried out with rational numbers until the final step. For numerics
computations with computers or desk calculators this is not much of a
advantage, so that it is better to normalize at each step so as to make use of th
simpler formula

gt

=f
- b(.f;, e)e,.
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Problem 2.21.3. A subspace W of V is an isotropy subspace of b if b(w, w) = 0
for every w e W.

(a) If W is an isotropy subspace, so is W + N.
(b) If s is the signature of b, then the dimension of a maximal isotropy

subspace is (d - Isi + dim N)/2.
(c) If q(x, y, z) = x2 + y2 - z2, q a quadratic form on R3, then the isotropy

subspaces are the generators (lines through the vertex) of a cone. The maximal
negative definite subspaces are the lines through the vertex of the cone and
passing within the cone. The maximal positive definite subspaces are planes
through the vertex which do not otherwise meet the cone.

Problem 2.21.4. Reduce q(x, y, z) = xy + yz + xz to a sum and difference
of squares, finding an orthonormal basis, the index, the signature, and the
nullity.

Problem 2.21.5. Show that the index and nullity are a complete set of inde-
pendent invariants for symmetric bilinear forms in the following sense. If
b and c are symmetric bilinear forms on V having the same index and nullity,
then there are bases {e,} and {f,} for which b and c have the same components,
respectively; that is, b(e,, e,) = c(f,,

Problem 2.21.6. Let b be a definite bilinear form on V and suppose that
v1i ..., vk are nonzero mutually orthogonal vectors. Show that v1, ..., Vk are
linearly independent. Is this true if b is merely nondegenerate?

2.22. Hodge Duality
We have noted in Section 2.18 that cross product of vectors in R3 enjoys the
same properties as the combination of wedge product and a correspondence
between Al R3 and A2 R3. In this section we shall show how to generalize
this correspondence. As in the case of R3, it will depend on an inner product.

The dimensions of the skew-symmetric tensor spaces over a vector space

V of dimension d have a symmetry,
(d)

= d p). The Hodge star operator

is an isomorphism between the pairs of these spaces of equal dimension:

*: A' V A'- P V.

We assume that V is provided with a positive definite inner product b and an
orientation.

An orientation of V is given by a nonzero element B of Ad V. If such an
orientation is given, we divide the ordered bases of V into two classes, those
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in the orientation and those not. An ordered basis (e1...., ed) is in the orienta-
tion given by B if el A A ed = a9, where a > 0. Any positive multiple of
B will divide the bases in the same way, so that we say that B and aO give the
same orientation of V if a > 0. The orientation itself is the collection of all
ordered bases in the orientation. Any two such bases are related by a matrix
having positive determinant, and if two bases are related by a matrix having
positive determinant they are either both in the orientation or both not in it.
There are clearly just two orientations.

If (e1, ..., ed) is an ordered orthonormal basis in the orientation, then
el A . . A ed is the volume element of the oriented vector space with inner
product b. We are justified in writing the volume element because it is unique.
Indeed, if (fl, .. J d) is any other ordered orthonormal basis in the orientation,
then

1 = ai eJ,
b(1,.f5) = Su

= b(ai eh, ai ek)
= a; aJ b(eh, ek)

= a aJ Shk
= a' a1.

Thus the inverse of the matrix (a'J) is its transpose (a;); that is (a,) is an
orthogonal matrix. Since the determinant of the transpose of a matrix is equal
to the determinant of the matrix,

det (SiJ) = 1
= det (al) det (a'J)

[det (a;)12,

so that det (a;) = I or -1. But ( f l , ... , f d ) and (e1, ... , ed) are in the orienta-
tion, so det (aj) > 0. Hence det (a5) = 1 and

.fi A ... Afd = det (a;) el A ... A ed
= el A ... A ed.

We define the Hodge star operator by specifying it first on the basis of
AP V obtained from an ordered orthonormal basis (el, ..., ed) in the orienta-
tion of V. (Actually there is one operator for each p = 0, ..., d.) We then
show that it is independent of the choice of such basis. A typical basis element
of AP Vise,, A A e,p. Let jl, ..., jd_p be chosen so that

(il, . . ., lp, 1, ...,.ld-P)

is an even permutation of (1, .., d). Then

*(esl A ... A e19) = e1, A ... A e!d_,. (2.22.1)
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An even permutation of i1, ..., 1, or of jr,.. ...,jd-, will not effect either
e,1 A A et, or e,1 A A e!a _D, so that the definition is independent of the

choices of orders of the indices. We extend * to be a linear transformation.

To show that * does not depend upon the choice of (e1, ..., ed) we decom-
pose * into the composition of maps which are independent of bases choices.

(a) Let F: AP V-- (Ad-' V)* be defined by requiring that for x E A V,
yEAd-P V,

where B = e1 A A ed.
<y,Fx>9=xAy,

(b) We define G: (^k V)* -> Ak(V *), as follows. Let {e,} be any basis of V,
{e'} the dual basis. Then {e'1 A - A elk I i1 < . . . < ik} is a basis of Ak(V*);
{e,1 A ...n e,k} is a basis of AkV and so has a dual basis of (A V)*,
{e'1 'k}. Let Ge'1 'k = ell A . . . Ae'k, and extend G by linearity. We show
that G is independent of the choice of basis. Let

I =a(e1
be another basis and {p'} the dual basis.

For any A e (A V)*, GA E AkV*, so GA is a skew-symmetric k-linear
function on V** = V. In particular, for A = e'1 'k, if i1 < < ik and
h1 < . < hk, then by Section 2.11 and (2.18.1),

GA(eh1, ..., ehk) = e'1 A

p

A e'k(ehl, \.., ehk)

= 1
sgn e'1>. . .<ehTk, e'k>

5l1... Sik
k! h' hk

1=
k,

<eh1 A ... A ehk, A>.

Both sides of this equation are skew-symmetric in h1i .. ., hk, so it follows
that it is valid for any A E (Ak V)*. Then we have for A e (Ak V)*,

GA(fh...... fhk) = GA(ahe,1, , ahkerk)
= ah'l ahkGA(e11,..., eik)

= k'i ail, . ahk <e,, A ... A ej,, A>

= ki A ... A ahkefk, A>

=k,<fh, A...Afhk,A>.
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In particular, if {p'1 'k} is the dual basis to { f,, A A f,,}, this equation also
holds for A = q`1 `k. But we also have

W', A ... A 'kU fh) = 1 s'1 . . stk
k h1 hk

('<fh, A A fhk, p'i 'k>.

Since Gj)`1 `k and P`1 A . . . A 9'k coincide as multilinear functions, they are
equal, which shows the desired independence of choice.

(c) Since b is a nondegenerate symmetric bilinear form on V, it may be
reinterpreted as a nonsingular linear function b,: V-* V*. The inverse map
bi-1 has an extension to a homomorphism of the exterior algebras, giving us
B: A' V* --> nk V.

We now show that * = B o G o F. It is sufficient to check equality on any
basis of A" V, in particular on {e,, A A e,,}, where (e,) is an oriented ortho-
normal basis of V. Letting k = d - p, i, < . . . < i and j,, .., j, be as in the
definition of *,

0 = <e1, A A efk, Eli fk>G (not summed)
= (e,, A ... A e,9) A eJ, A A e,.,

while for h,, ... , hk not a permutation of j,, ... , jk,
<eh, A . .. A

ehk Ell
fk>8 = 0

= (e,, A A ej,) A eh, A. A ehk

Thus for

so we must have

Y = ah1' hk eh, A ... A ehk CA k V,

<Y, E'' !k) 0 = e,, A A e,, A Y,

Fe,,A.. Ae,9=Efl
By definition GEJ' Jk = Eli A A efk.
Finally,

1k.

BEJ' A . . A Eik = bi 'EJ, A ... A bi- 'Elk
= e,, A . A elk

Thus B o G o F coincides on a basis with *, so they are equal. I
The composition of * with itself is a map which preserves degrees:

* o *: A" V-.AP V. More than that, on AP V, * o * is simply the identity or
its negative, depending on p and d. For, if (i,, . , i j . . , j , ) is an even
permutation of (1, ..., d), then (j,, . , jk, il, ., i,) is also a permutation of
(1,. , d) which is even or odd depending on whether pk = p(d - p) is even
or odd, since each j must be transposed with each i to pass from permutation
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(i1, , ip, ill ,jk) to (jr, .. , jk, i1, .. , ip), giving a total of pk transposi-
tions. Thus if *(e,, n - A e,0) = e;, n ... A e;k, then *(e, n A e;k) =
(-1)pke,, n . A e',. Thus we have proved

Theorem 2.22.1. The composition of * with itself, * o *, equals (-l)"'-p'Ip
on A" V, where Ip is the identity on A" V. In particular, if d is odd, * is its own
inverse. If d is even, * is its own inverse on the spaces A" V with even degree p,
the negative of its inverse on spaces A" V with odd degree p.

Problem 2.22.1. At each point of E3, euclidean space, (dx, dy, dz) is an
oriented orthonormal basis of the dual space to the tangent space (covariant
vectors). At points not on the z axis, spherical coordinates p, 'p, 0 are an
admissible coordinate system (when suitably restricted), so that (dp, dF, d0)
also is a basis of the covariant vector space. They are orthogonal but not
normal. The normalizing factors are the lengths of the contravariant basis
vectors clap, alarp, and ola0, which can be found geometrically by letting each
coordinate vary in turn at unit rate with the others fixed and observing the
speed of motion. Find the normalizing factors and thus compute * on A' in
terms of the bases (dp, dg), d0) of A' and (dp n dT, d99 A d0, d0 A dp) of A2.

Do the same for cylindrical coordinates r, 0, z.

On A° = R, * maps I into the volume element, *1 = e, A A ed, and
on Ad, *(e, n ... A ed) = 1 e A°.

To obtain the * operation for nondegenerate indefinite quadratic forms we
obtain orthonormal bases by extending the scalar field to the complex numbers.
Then if (e1, ..., ed) is an orthonormal basis in the sense previously given,
with b(e;, e;) = -1 for 1 j <_ I, where I is the index of b, (ie,, . . ie,,

e,+1, . . , ed), where i2 = -1, will be an orthonormal basis having
b(ie;, ie,) = b(ek, ek) = 1 for I <_ j <_ / and k > I. The definition of * will
then proceed as before. However, it may happen that * maps real vectors
into complex ones, as in the following.

Problem 2.22.2. The space-time continuum of special relativity is R4 with
coordinates x, y, z, t and a quadratic form on the covariant vector spaces
having index 1-the one for which (dx, dy, dz, idt) is an orthonormal basis.
The volume clement is then idx n dy n dz A dt. Compute * on A', A2, and A3
in terms of the real basis elements dx, dy, dz, dt, dx A dy, etc.

2.23. Symplectic Forms
The rank of a skew-symmetric bilinear form is the minimum number of
vectors in terms of which it can he expressed. We may think of a skew-sym-
metric bilinear form b on V as being in A2 V*. If b can be written in terms of
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el, ... , e', then we may discard any dependent el's and extend to a basis,
getting

b = b,je' ®e', where b,t = 0 unless i, j < r,
= b,jet A e', since b,j = -bit,

so it does not matter, in the definition of rank, whether the mode of expressing
b is in terms of tensor products or exterior products.

If we let W be the subspace spanned by el, ..., e', then b E A2 W. If k is any
integer such that 2k > r, then the k -fold exterior product of b,

A k b = b A- AbEA2kW,
is zero, so we have proved

Proposition 2.23.1. If the rank of b is r and 2k > r, then nk b = 0.

If e1, ..., e2p are linearly independent and we let

b = el A e2 + e3 A e4 + ... + e2p - 1 A e2p,

then the p-fold product of b is

AP b = p!e' A e2 A ... A e2p # 0. (2.23.1)

By Proposition 2.23.1, b has rank r >_ 2p, but b is expressed in terms of 2p
vectors, so r 5 2p. Thus we have

Proposition 2.23.2. If e', . ., e2p are linearly independent, then the rank of
b = el A e2 + e3 A e4 + ... + e2p -' A e2p is 2p.

Problem 2.23.1. Prove formula (2.23.1).

Now suppose that r is the rank of b, and el, . , e' are such that

b = a,;e` A e',
i<;

where a = a12 76 0. Then b = e' A 1 <, a1je1 + e2 A >2 <j a2;e' + terms in-
volving e3, . . ., e' = el A ip1 + e2 A y2 + terms involving e3, .. , e', where 'P 2
has only terms in e3, ..., e'. But ,' = ae2 + T3, where lp3 has only terms in
e3, .. , e', so that

Thus

e2 = C9'1 - cg13 where c = 1/a.

b = el A 91 + cq"l A T2 - cg73 A q,2 + terms in e3, ... , e'
= (e1 - cp2) Act + terms in e3, . ., e'

=a1Aa2+b1,
where b1 has rank r - 2. Continuing in this way we obtain, for every k such
that 2k <_ r,

b = a' A a2 + a3 A a4 + ... + a2k -' A a2k + bk,
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where bk has rank r - 2k. In particular, we can continue until r - 2k = 0
or 1. But it is not possible for the rank of bk E A2 V* to be 1, for the only
thing expressible in terms of one a e V* is a multiple of a A a = 0. We include
this result in the following.

Theorem 2.23.1. If b is a skew-symmetric bilinear form of rank r, then

(a) r is even, r = 2p for some p.
(b) There are linearly independent El, ..., e2p such that

b = e1Aep+1 + e2Aev+2 +...+ epAe2D.

(c) Ap+1 b = 0 and A" b i4 0.
(d) T h e range o f b when viewed as a linear function b, : V-* . V* i s 2p-

dimensional and i s spanned by e1, ... , E2'.

Proof. All except (d) follow easily from the previous results. For (d) we
extend {e{} to a basis and let {e,} be the dual basis of V. Then

b,e, = (e1 AEp+1 +.. +e"Ae2p)1el

= 3L1[E1®ep+1 _ ep+i®e1+...]lei
+je'+p if i < p

-1e1_p ifi>p
0 if i > 2p.

The space spanned by the values of b, on a basis is the range of b, and is
clearly the span of el, . . ., e2y.

Corollary. The only invariant of a skew-symmetric bilinear form under an
arbitrary change of basis is its rank; that is, if b and c are two such forms, then
there are bases {e,} and {f,} of V such that b(e,, e;) = c(,, f!) iff the ranks of
b and c are equal.

A symplectic form is a skew-symmetric bilinear form of maximal rank;
thus the rank will be d if d is even, d - 1 if d is odd.

A symplectic basis for a symplectic form b is a basis {e'} such that

b = e1Aep+1 +...+ epAe2D.

The change of basis matrix between two symplectic bases must satisfy
certain relations. This is analogous to the change of basis matrix between two
orthonormal bases of a positive definite quadratic form, which must be an
orthogonal matrix; that is, it satisfies the relation AA* = I, where A* is the
transpose of the matrix A, obtained by interchanging the rows and columns
of A, and 1 is the identity matrix.
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To find the relations satisfied by a change of basis which leaves invariant
the normal form of a skew-symmetric form b £` A £'+D we introduce
a summation convention in which indices range over the following values:

i,j = 1, ,P,
h,k=p+1,...,2p,
m,n=2p+1,.. d.

a = 1, . , d.

The change of basis matrix will be split into blocks corresponding to these
ranges of indices:

A B
C D G , A = (a), B = (bk), C = (ck), etc.;

E F

that is, the new basis is
aj£' + c(,e" + e!'m£m,

91k = hi £' + dhe" + f, em,n = gn£".a

Now if we are also to have b = (Pu A p"+D then

D

b = (a, £i + ch£h + em£m) A (bi +Dei + dk i D£k + ./ n+D£n)
u=1

[aybJ1u+D £'A £J + chudk+D £h A £k + e.u n+D£m Aen
"=1

+ ((al du * ' _' fjl * D( h)£i A £h + (at J m + D - bi +l Dem)£' A £m

+ (chu{miD - dhiDem)£hA£m + emJn+v£mA£n]

£" A e"+D.
u=1

Equating coefficients of £' A £i, i < j, gives

P

(aibl rD - bf +Dal) = 0.
"=1

Since this trivialy holds for i = j and for j < i by skew-symmetry, we may
write it in matrix terms as

AB*-BA*=0.
Similarly, equating coefficients of £' A £h, £' A £I, and £h A £'" gives matrix

equations
AD*-BC*=1,
CD* - DC* = 0,
AF*-BE*=0,
CF*-DE*=0.
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From these we deduce that [since (RS)* = S*R*] the inverse of the block
with A, B, C, and D can be expressed in terms of its own elements:

A B D* -B* AD* - BC* -AB* + BA*
(C D)(-C* A*) = (CD* - DC* -CB* + DA*)

\0
1).

(We have used the fact that we are justified in multiplying compatible block

matrices using the rule for 2 x 2 matrices.) Moreover, if H =

then H(-E*) = 0, so that (_:) = H-'H(-E*) = 0.

A symplectic matrix is a 2p x 2p matrix of the form ( C D) such that its

/
inverse is 1 -B C)

*,
where A, B, C, and D arep x p matrices.

Theorem 2.23.2. A change of basis matrix for which the change of basis leaves
invariant the normal form b = J'.. E' A Ei+n of a rank p skew-symmetric

bilinear form is a matrix of the form \' Gwhere H is a symplectic

2p x 2p matrix.

Problem 2.23.2. Show that the product and inverse of symplectic matrices
are symplectic, both by actual computation and by an argument from change
of basis considerations.

Problem 2.23.3. A complex matrix U = A + iB is unitary, where A and B

are real, if the inverse of U is U-' = U* = A* - iB*. Show that if (C D)

is both symplectic and orthogonal, then A + iB is unitary, and, conversely,

if A + iB is unitary, then (-B B) is both symplectic and orthogonal.



CHAPTER 3
Vector Analysis on Manifolds

3.1. Vector Fields
A vector field X on a subset E of a manifold M is a function which assigns to
each m e E a vector X(m) at m, so X(m) e Mm. The domain of X is E and the
range space is the tangent bundle TM of M, defined in Section 1.8 to be the
collection of all tangents at all points of M.

If U is a coordinate neighborhood with coordinates x', then (by Theorem
1.7.1) at each m e U, the a,(m) form a basis for Mm. Thus if m e E, there are
real numbers X'm, the components of X(m), such that X(m) = (X'm) a,(m).
As we let m vary through E n U, m -* X'm defines d real-valued functions X'
on E n U, the components of X with respect to the coordinates x'.

If V is another coordinate neighborhood with coordinates y' and Y' are the
components of X with respect to y', then on E n U n V, by the law-of-change
formula (1.7.1),

Y'=X'ax'

If f is a C m real-valued function defined on an open set W of M, then Xf is
the real-valued function defined on W n E by

(Xf)m = X(m)f

for every m e W n E. Just as single tangents were defined as operators on Cm
functions to real numbers, vector fields could be defined directly as operators
on Cm functions to real-valued functions which satisfy the linearity and pro-
duct rules:

(a) X(af + bg) = aXf + bXg,
(b) X(fg) _ (Xf)g +fXg

Here, (b) is actually simpler because the right side consists of function products
and sums, not products and sums of function values. However, Xf is not
116
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necessarily C-; indeed, E need not be an open set, so that differentiability of
If would fail on that account.

On U n W n E the expression for Xf is Xf = X' 8,f.
A vector field X is C m if its domain E is open and for every C m function f,

Xf is also a Cm function.
The components of X are X' = Xx', so that if X is Cm, its components are

Cm, since the x' are Cm. Conversely, if X has Cm components X' = Xx' with
respect to every coordinate system x', then X is C m. Indeed, if f is a C m func-
tion with domain W, then for m e W there is a coordinate system x' with
domain U containing m. The expression for Xf in U n W n E is X'2,f, which
is a sum of products of C m functions, hence is C m. This shows that If is C m
in a neighborhood of each point of its domain, so If is C'. We have proved

Proposition 3.1.1. A vector field X is C m iff for every coordinate system x'
the components of X with respect to the x', X' = Xx', are C'functions.

Our previous nomenclature, calling 8, coordinate vector fields, agrees with
the present notation, since 8, are obviously Cm vector fields.

If t is a single tangent at m, we may choose coordinates at m, so t = a'8,(m),
where a' a R. Thus t is the value at m of the C m vector field X = a'8,, where the
a' are regarded as being constant functions. Furthermore, if g: M -* R is a
Cm function such that gm = I and g vanishes identically outside a neighbor-
hood W of m contained in the coordinate domain U [see Problem 1.6.2(b)],
then we may define

Y=
gX on W,

0 outside W.

Then Y is a C m vector field on all of M such that Y(m) = t.
A C m vector field Z is a C m extension of t o M,,, if Z is defined at m and

Z(m) = t. The vector fields X and Y of the previous paragraph are Cm
extensions of t.

Proposition 3.1.2. If t e Mm, there is a C m extension of t to all of M.

Problem 3.1.1. Let U be the domain of coordinates x', V the domain of
coordinates y', and suppose that 8/8x' = 8/8y', i = 1, ..., d, on U n V. If
U n V is arcwise connected (see Section 0.2.7), show that y' = x' - a' on
U n V, where the a' are constant. On the other hand, show by examples of
coordinates on the circle and the torus that if U n V is not connected, then
y' - x' may have different values in the different connected components of
U n V.
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Problem 3.1.2. If X and Y are C m vector fields and f is a C m function, then
Yf is a Cm function, to which X may be applied, getting Cm function XYf.
Show that the operator XY: f -* XYf has as its coordinate expression a

z
second-order partial differentiation operator, X Y = F" 8x92xj + G'

ax'.
Express the coefficients F" and G' in terms of the components X' = Xx' and
Y' = Yx' of X and Y.

Problem 3.1.3. In contrast to single vectors, show that a Cm vector field X
may not have a Cm extension to the whole manifold; that is, there may be no
C m vector field Z on all of M such that for every m e V, the domain of X,
X(m) = Z(m). (Hint: Take U so that there is a point in M which can be ap-
proached from more than one part of U, and define X so that its limits on
different approaches are different.)

3.2. Tensor Fields

For each type (r, s) of tensor and each m e M, there is the corresponding tensor
space Mm's over Mm. For fixed (r, s) the union of these tensor spaces as m varies
is called the bundle of tensors of type (r, s) over M, denoted T;M. Thus

TsM = U Mm's.
meM

In particular, we have the tangent bundle TM = TO'M, the scalar bundle
T$M, and the cotangent bundle T°M. Other names for T°M are the bundle of
differentials of M (since it contains all the values at points of M of the dif-
ferentials of real-valued Cm functions) and the phase space of M (this is
customarily used when M is the configuration space of a mechanical system).
The scalar bundle T$M is the same as M x R, since Vo = R for any vector
space V.

A tensor field T of type (r, s) is a function T: E -* TsM, where the domain
E of T is a subset of M, such that for every m e Ewe have T(m) e Mms.

If r = 1, s = 0, then we again have vector fields; that is, a tensor field of
type (l, 0) is a vector field.

If r = s = 0, then T assigns a scalar to each m c E, so a tensor field of type
(0, 0) is simply a real-valued function.

If f is a Cm function on E M, then for every m e E, dfm E M.* = Mmo
Thus the differential off, df: E - T° Al, is a tensor field of type (0, 1).

We call a tensor field T symmetric if its value at every point m, T(m), is a
symmetric tensor. We define skew-symmetric tensor fields similarly.
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if T is a tensor field of type (r, s), 01i ..., 0, tensor fields of type (0, 1), and
X,,.. ., X. vector fields, then we define a real-valued function on the inter-
section of all r + s + 1 domains (of T, the 0's, and the X's) by

T(Bl, ..., B X1, ..., X,)m = T(m)(01(m), . . ., 0,(m), X1(m), . ., X,(m)).

In particular, the components of T with respect to coordinates x' are the d",
real-valued functions

Tip r, = T(dx'1, .. , dx'', a,,,

Turning the analogue of Proposition 3.1.1 into a definition, we say that
tensor field T is C °° if its components are C °° functions. A tensor field of type
(0, 1) which is also C`° is called a 1 form(pfaffian form). The analogue of the
definition of C`° for vector fields is the following, given without proof.

Proposition 3.2.1. A tensor field T of type (r, s) is C `° ii f for all 1 forms
d,, .., 0, and all C°° rector fields X1i. ., X, the function T(81,...,
X1, . , Xs) is C°°.

For the evaluation of 1-forms on vector fields we use the symmetric notation
as with single vectors and covectors. That is, if X is a vector field and 0 a
1-form, we write <X, 0> for 0(X), a real-valued function on M.

If f is a C- scalar field, then df is a 1-form. However, not every 1-form is of
the form df for some C °° function f. In fact, if x' are coordinates,

df = a;f dx`

is the coordinate expression for df, from which it follows that the components
B, of df satisfy

a,B, = a,B; (3.2.1)

no matter what coordinates are used. On the other hand, if U is a coordinate
domain for the x', we define a 1-form on U by r = x' dx2. The components of
r are 7; = 8{2x1, so we have

but
a2T1 = ago = 0,

017-2 = 0,x1 = 1.

It follows that there can be no function f such that r = df.
As a multilinear function of vector fields and 1-forms, a tensor field is linear

in each variable with respect to multiplication by scalar fields:

T(...,fX,.. ) =fT(. ., X,.. ). (3.2.2)
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Another fact, which may be derived as a consequence of (3.2.2), is that if one
of the variables is zero at a point m, then so is the tensor field function of those
variables :

If X(m) = 0, then T(..., X, ...)m = 0. (3.2.3)

Indeed, in terms of coordinates X = f'8,, where f'm = 0 for each i, so that
T(..., X, ...)m = (f'm)T(..., 8,, ...)m = 0. Furthermore, the values of a
tensor field evaluated on vector fields and 1-forms depend only on the com-
ponents of the vector fields and 1-forms, and not on the derivatives of these
components. Or what is the same thing, if two sets of vector field and 1-form
values are the same at m, then the values of Ton them are the same at m: If
0a(m) _ -ra(m) and X8(m) = Ya(m), then

T(01i ..., 0r, Xl, ..., X,)m = T(r1, ..., rr, Y1, ..., Y,)m. (3.2.4)

Problem 3.2.1. Let T be a function on r 1-forms and s C' vector fields which
assigns to them a C m real-valued function such that (a) T is multilinear with
respect to multiplication by constants: T(. . ., aX, ...) = aT(..., X, ...), and
(b) T is additive in each variable: T(..., X + Y, ...) = T(..., X, ...)
+ T(... , Y, ... ). Show that if T satisfies any one of (3.2.2), (3.2.3), or (3.2.4),
then T is a tensor field.

Problem 3.2.2. Let f be a fixed C' function which is not constant. For C
vector fields X and Y define T(X, Y) = X Yf. Show that T satisfies (a) and (b)
of Problem 3.2.1 but that T is not a tensor field.

3.3. Riemannian Metrics
A symmetric C tensor field of type (0, 2) which is nondegenerate and has the
same index at each point is called a semi-riemannian metric. * If the field is posi-
tive definite at each point, it is a riemannian metric. If the index is I or d - 1, it
is called a Lorentz metric. A manifold which has one of these fields distinguished
is called a semi-riemannian, riemannian, or Lorentz manifold, as the case may be.

If the manifold is connected, the condition that the index be constant is
redundant. For, as we move along a continuous curve the index of a Cm
symmetric tensor field of type (0, 2) cannot jump from one value to another
unless the form becomes degenerate at the jump point.

For a given manifold there are infinitely many different riemannian metrics.
If g is a semi-riemannian metric and f is a positive C°° function, then fg is a
semi-riemannian metric of the same index as g. Thus if there is one g, there are
infinitely many.

On the other hand, the existence of a semi-riemannian metric of index

* Also called a pseudo-riemannian metric.
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k 96 0 or d depends on the topological structure of the manifold. For example,
the only compact surfaces on which there is a Lorentz metric are the torus and
the Klein bottle. In particular, the 2-sphere admits only definite (positive or
negative) semi-riemannian metrics. Odd-dimensional manifolds always admit
Lorentz metrics. In general the topological properties involved in the existence
of metrics of a given index are difficult to study and not usually known in
particular examples. It was only discovered in the 1950s what indices are
possible for the spheres. For parallelizable manifolds (Appendix 3B) metrics
of all indices from 0 to d exist.

3.4. Integral Curves

If X is a vector field defined on E C M, a curve y is an integral curve of X if the
range of y is contained in E and for every s in the domain of y the tangent
vector satisfies y,s = X(ys). If y0 = m, we say that y starts at m. Note that the
property of being an integral curve not only depends on the curve as a set of
points (the range of y) but also on the parametrization of V. The allowable
reparametrizations are rather restricted, as indicated by the following.

Proposition 3.4.1. If y and r are integral curves of a nonzero vector field X
which have the same range, then there is a constant c such that rs = y(s + c) for
all s in the domain of T. Conversely, if y is an integral curve, then so is r,
rs = y(s + c), no matter what c is. In other words, a reparametrization of an
integral curve is also an integral curve iff the reparametrization is a translation
of the variable.

Proof. Suppose f: (a, b) --> (a, 9) is a reparametrizing function, so that
r = y -f, that is, rs = y(fs) for a < s < b. Then rs = (f's)y,(fs), by the chain
rule, so if r,s = X(rs) and y,t = X(yt) for a < s < b and a < t < j3, then
f's = 1. Thusfs = s + c for some constant c. Conversely, iffs = s + c, then
f's = I and r,s = y,(fs).

Corollary. The parametrization of an integral curve is entirely determined by
specifying its value at one point.

Proof. For the case of a nonzero vector field the result is evident from the
theorem. However, the integral curve through a point where the vector field is
zero is a constant curve, yt = m for all t, and a constant curve is unchanged by
reparametrization and is certainly determined by its value at one point.

In terms of coordinates the problem of finding integral curves reduces to a
system of first-order differential equations. For coordinates v' defined on U we
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have X = X'et, where X' are real-valued functions defined on E c U,

ys = d(x' ° r)
(at ° y),du

X°y=X`°y(ai°y)
Since a, are a basis at each point, the condition for y to be an integral curve is
d(x' o y)/du = X' o y. The part of y in U is determined by the functions
g' = x' ° V. The components X' determine their coordinate expressions, real-
valued functions F' defined on part of Rd such that X' = F'(x',..., xd). Thus
we have

Proposition 3.4.2. A curve y is an integral curve of X iff for every coordinate
system the coordinate expressions g' of y and F' of X satisfy the system of
differential equations

dgi
du = F'(g', , gd) (3.4.1)

Theorems on the existence and uniqueness of integral curves are based on
corresponding theorems on the existence and uniqueness of solutions of such
systems of ordinary differential equations in Rd; computations to find integral
curves are based on techniques for solving such systems. For vector fields
which are defined on a domain which is not included in a single coordinate
domain, solutions are patched together (extended) from one system to the
next. We state the following without proof.

Basic Existence and Uniqueness Theorem. Suppose F' are C"° on the region
determined by the inequality 1, 1 u' - a' <- b, where b > 0, and let K be an
upper bound for j; I F' I on that region. Then there exist unique functions g'
defined and C°° on I u - c I < h/K such that they satisfy the differential
equations (3.4.1) and the initial conditions g'c = a'. (Reference: D. Greenspan,
Theory and Solution of Ordinary Differential Equations, Macmillan, New York,
1960, p. 85, Theorem 5.5.)

Theorem 3.4.1. Let X be a C °° vector field defined on E c M, m c- E, and
c c R. Then there is a positive number r and a unique integral curve y of X defined
onIu - cI 5r such that yc = ni.

By uniqueness we mean that if r is an integral curve defined on I u - c r'
and rc = m, then y and T coincide on the smaller of the two intervals.

Proof. An open set, such as E, will contain closed coordinate "cubes" of the
sort mentioned in the basic theorem, with any given point m as center. The
center is the point with coordinates a'. For an upper bound of I F' I on
7, 1 u' - a' I <_ b we can use its maximum, which exists since the sum is con-
tinuous and the cube is compact (see Proposition 0.2.8.3). 1
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Theorem 3.4.1. does not use the full strength of the basic existence and unique-
ness theorem. It is not specific about the size of the interval on which the curve is
defined. The number r may depend on the point m, and, in particular, there may
be a sequence of points {m,} such that the limit of any corresponding sequence
{r,} must be zero. By imposing a further condition, compactness, on the region
through which the integral curve is to pass, we can make use of the specific
estimate of the basic theorem to show that either an integral curve extends in-
definitely or passes outside the compact set. The following lemma allows us to
adapt the conditions of the basic theorem to a compact set.

Lemma 3.4.1. Let C be a compact set in a manifold M. Then there are a finite
number of coordinate systems, each of which includes in its range the closed cube
2, 1 u' I <-2, and such that every point of C is mapped into one or more of the open
cubes It Iu'I <I.

Proof. At each m e C there is a coordinate system (x') such that x'm = 0. The
domain contains some closed cube of the form It 1 x' I <2b. Letting y' = x'/b,
we obtain new coordinates such that the closed cube It I y' 15 2 is in the y'-
domain. The open cubes It I y' I < 1, one for each m e C, form an open covering
of C. Since C is compact, there are a finite number which cover C, as the lemma
asserts. I

Theorem 3.4.2. Let X be a C" vector field, C a compact set contained in the
domain of X, m e C, and c e R. Then there is an integral curve y of X such that
yc = m and

(a) Either y is defined on (c, +w) or y is defined on [c, r], where yr 0 C.
(b) Either y is defined on (- oo, c] or y is defined on [r', c], where yr' 0 C.

Proof. The domain of X is an open submanifold containing C, and we take this
open submanifold to be the manifold of Lemma 3.4.1, so that we may assume
that the larger closed cubes of Lemma 3.4.1 are contained in the domain of X.
For each of these systems we have the coordinate expressions F' for the com-
ponents of X. Since It I F' I is continuous, it has a maximum on the closed cube
1, 1 y' 1 <2, and since there are a finite number of such cubes, there is a largest
one of the maximums, which we call K.

If m' is any point in C, then m' is included in one of the coordinate cubes of
size 1, say y'm' = a', where ;, I a' I < I. By the triangle inequality the unit
coordinate cube with center m' is contained in the larger closed cube; that is,
from 2, 1 y' - a' 1 <-1 and It I a' I < 1 we conclude It I y' 1 <- 2. Thus the maxi-
mum of It I F' I on 2, 1 y' - a' 1 :51 is no greater than K. It follows from the
basic theorem that the integral curve of X through m' is defined on an interval of
length at least 2/K, with m' corresponding to the center of the interval. The
importance of this is that we may always extend by the fixed amount 1/K as long
as we start from a point of C. It should now be clear that we can start at m and
extend step by step in both directions either until the endpoint of some step falls
outside C or until we get beyond any given parameter value. I

The following is an important corollary.
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Theorem 3.4.3. Suppose X is a Cm vector field defined on all of a compact mani-
fold M. Then every integral curve may be extended to all of R.

A vector field is said to be complete if all its integral curves may be extended to
all of R. Thus a globally defined C° vector field on a compact manifold is com-
plete.

Examples. Let M = R2 with cartesian coordinates x and y, and corre-
sponding coordinate vector fields ax and a,,. Let X = xax + ya, and Y =
-yax + xa,,. Then with the customary disregard for the distinction between
x and x o y, etc., the equations for the integral curves of X are dxldu = x and
dy/du = y. The general solution of these equations is x = ae°, y = beu. The
unique integral curve y such that y0 = (a, b) is thus given by y = (ae", be°).
It is defined on all of R, so X is complete. The integral curve starting at (0, 0)
is the constant curve y = (0, 0). The other curves, as sets of points, are the
open half-lines with origin (0, 0).

The equations for the integral curves of Y are dx/du = -y and dyldu = x.
The general solution (use d2x/due = -dy/du = -x, etc.) is x = a cos u
- b sin u, y = b cos u + a sin u. The integral curve y such that y0 = (a, b) is
given by y = (a cos u - b sin u, b cos u + a sin u). When a = b = 0, it is the
constant curve (0, 0); otherwise it is a circle traversed uniformly in a counter-
clockwise direction so that a change in u by 27r gives one revolution. Y is
complete.

Problem 3.4.1. Let X = Fax + GO, be a C°° vector field defined on all of R2
and suppose that there is a constant K such that I F I + I G I < K. Show that
X is complete. Is this a necessary condition for completeness?

Problem 3.4.2. Show that X is complete if there is r > 0 such that for every
m the integral curve of X starting at m is defined on (-r, r).

Problem 3.4.3. Let X be a C°° vector field on M, and let f: M-> R be a
positive C'° function. Show that for every integral curve y of X there is a
function g having positive derivative and there is an integral curve T offX such
that y is the reparametrization T o g of r. Find the relation between g, y, and f.

Problem 3.4.4. Find the integral curves of X = ax + e-"a,,. Is X complete?

Problem 3.4.5. Find the integral curves (in R3) of ax + x2a + (3y - x')8,.

3.5. Flows
if a vector field represents the velocity field of a flowing fluid, then the path
traced by a particle parametrized by time is an integral curve. However, there is



S3.5] Flows 125

another significant viewpoint: We can ask where the fluid occupying a certain
region has moved to after a fixed elapsed time. This viewpoint leads us to a
purely mathematical notion associated with a vector field-its flow.

The flow of a vector field X is the collection of maps {µ,: E, -* M I s e R},
such that in = ys for each m e E where y,n is the integral curve of X start-
ing at m. Thus m and µm are always on the same integral curve of X and the
difference in parameter values at µ,m and m is s; in other words, µ, is the map
which pushes each point along the integral curve by an amount equal to the
parameter change s. The domain of µ E consists of those points m such that
y,,, is defined at s. Thus if 0 < s < t or if t < s < 0, then Et c E since if y,n

is defined at t, then it is defined at every point between 0 and t. If X is complete,
then E, = E, the domain of X, for every s. If X is C then there is an integral
curve y,n for every m e E, and since y,,, is defined at 0, Eo = E. Moreover, it is
evident that µo: Eo - M is the identity map on E0, since y,n0 = m. The flow of
a vector field X conveys no more information than the totality of integral
curves of X.

For a C°° vector field the domains E. are all open. More specifically, we
have:

Proposition 3.5.1. If X is a C ' vector field with domain E - M, then for every
m e E there is a neighborhood U of m and an interval (- r, r) such that µ, is
defined on U for every s e (- r, r).

The proof requires little more than a translation of the information given by
the basic existence and uniqueness theorem and so is omitted.

In the past, vector fields have been called infinitesimal transformations and
they were thought of as generating finite transformations, that is, their flows.

A one parameter group is a collection of objects {µ. I s e R}, provided with an
operation o which is related to the parametrization by the rule µ, ° µt = µS+t
such that there is c > 0, for which the µ, with - c < s < c are all distinct. For
examples, the real numbers themselves, µ, = s with o = +, and the circle of
unit complex numbers, µ, = ets with o = multiplication, are one-parameter
groups. In fact, "up to isomorphism" these are the only one-parameter
groups.

Proposition 3.5.2. The flow {µ,} of a complete C' vector field X which is not
identically 0 is a one-parameter group under the operation of composition.

Proof. There are two things to verify:

(a) For every s, t, µ, o µt = ps+t
(b) There is c > 0 such that the µ - c < s < c, are all distinct.

Part (a) may be viewed as a restatement of Proposition 3.4.1. For if m e E,
and y,n is the integral curve of X starting at m, then r defined by Ts = y,n(s + t),
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for t fixed, is also an integral curve of X; indeed, TO = ym(0 + t) = Vmt, so
T = yn, where n = ymt = µtm. But then µn = it, o ptm = y, s = Ts =
Vm(s + t) = µ,+tm, which proves µ, -)At =

To prove (b) we let m be a point such that X(m) 0. Choose coordinates x`
at m such that X'm # 0; because X' is continuous we may restrict to a smaller
coordinate domain on which X1 0 0. By reversing the sign of x' if necessary,
we also can obtain X' > 0. By the first differential equation for integral curves,
dg'/du = F'(g',, gd), we then have that dg'/du > 0, so that g' is a strictly
increasing function along any integral curve within the xt-domain. Thus for the
r of Theorem 3.4.1 for ym and an x'-coordinate cube, we have that g1s = x'yms
is strictly increasing for -r < s < r, so that the points y,s = µ,m, -r < s < r
are all distinct. Hence the µ, for -r < s < r are all distinct. I

A local one parameter group is a collection of objects {µ,} parametrized by an
interval (possibly unbounded) of real numbers {s} containing 0, provided with
an operation (µ.,, µt) --* µ, o µt which is defined at least for all pairs s, t in some
interval about 0 and satisfies u, o p, = µt whenever defined, and such that
the µ, are all distinct for -c < s < c, for some c > 0.

By a slight abuse of language we can claim that the flow of a C °° vector field
is a one-parameter group, but more precisely what we have is the following.

Proposition 3.5.3. Let X be a C' vector field. Then for each min the domain of
X such that X is not identically 0 in some neighborhood of m, there is a neighbor-
hood U of m such that the collection of restrictions {µ,I u} of the flow of X to U
is a local one-parameter group.

The proof is very much like that of Proposition 3.5.2 except for automatic
modifications needed to fit the local definition, so it is left as an exercise.

Examples. (a) Let M = Rd and let the vector field be al, where the co-
ordinates are the Cartesian coordinates on Rd. The integral curves of a, are
given by the differential equations du'ldu = 1, du'/du = 0, i > I, so that if
m = (c', .., cd), yms = µ,m = (c' + s, c2, .., cd). Thus µ, is translation by
amount s in the u' direction.

(b) If X = xl3 + yat, on R2, then the integral curves are yta,b,s = (aes, he).
Thus µ,(a, b) = e'(a, b) and tc, is a magnification by factor e' and center 0.

(c) If y = -yax + xay on R2, then the integral curves are y(a,b)s =
(a cos s - b sin s, a sin s + b cos s), and t,, is a rotation by angle s with
center 0.

(d) If X is the "unit" radial field on M = R2 - {0}, in polar coordinates
X = a, and µ, is a translation by s in the r-direction, which is given in cartesian
coordinates by µ,(a, b) = [(r + s)/r](a, b), where r = (a2 + b2)112. It is de-
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fined whenever -s < r. For s >_ 0, µ, is defined on all of M, E3 = M. For
s < 0, µ, is defined outside a disk of radius -s; that is,

E. _ {(a, b) I (a2 + b2)"2 > -s}.

For some applications of the flow of a C m vector field we need the smooth-
ness properties stated in the following theorem.

Proposition 3.5.4. Let {µ,} be the flow of a C- vector field X. Then the function
F, defined on an open submanifold of M x R by F(m, s) = µm, is C m. In other
words, µ,m is a C m function of both m and s.

The proof is too technical to give here. It involves an initial reduction to
coordinate expressions, which we have already seen, and then a proof that
solutions of systems of Cm differential equations have a Cm dependence on
initial conditions. Theorems of this sort are found in more advanced treatises
on differential equations, for example, E. Coddington and N. Levinson,
Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955,
p. 22, Theorem 7.1.

If we are given a collection of maps which behave like the flow of a vector
field, it is possible to obtain a vector field for which they are the flow. Speci-
fically, we have

Proposition 3.5.5. Let {u,} be a local one parameter group of C m maps,
µ,: E, -. M, such that the group operation is composition and the function Fgiven
by F(m, s) = in is a Cm function on an open subset of M x R Then there is a
C m vector field such that {u,} is a restriction of its flow.

Proof. For in e Eo = E and f: M-* R any Cm function, define X(m)f =
Of o F/es(m, 0). The linearity and derivation properties of X are easily verified,
so X is a vector field on E. Moreover, Xf is the composition of the C' function
of o F/es with the Cm injection m -- (m, 0), so X is a Cm vector field.

It remains to show that {µ,} coincides with the flow of X on its domain. For
this it suffices to show that the curves r.: s are integral curves of X.
The derivative off: M - . R along rm at s = t is

rm#(t)f = T (t)f(ism)

= ds(t)f(µs:m)

= ds(0)I (µsµem)

9f
as F G"m' 0)

= X(µ'm)f
= X(rmt)f.
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Thus Tm*(t) = X(rmt) and rm is an integral curve of X.

As an application of Proposition 3.5.4 we obtain a local canonical form for
a nonzero C W vector field.

Theorem 3.5.1. If X is a C'° vector field and X(m) # 0, then there are co-
ordinates x' at m such that in the coordinate neighborhood X = al. In other
words, every nonzero vector field is locally a coordinate vector field.

Proof. Choose coordinates y' at in such that y'm = 0 and X(m), a/8y2(m),
. . ., a/ayd(m) is a basis of Mm. Define a map F of a neighborhood of the origin
in Rd into M by

2 d 1 2 dF(s,a ,...,a) = ic,B- (O,a,...,a ),
where {µ,} is the flow of X and 0 = (y',..., yd) is the y' coordinate map. It is
clear that Fis Cm.

As s varies µ,m' moves along an integral curve of X for every m'. Thus the
integral curves of X correspond under F to the u' coordinate curves in Rd. If
F is the inverse of a coordinate map, then the first coordinate curves must be
the integral curves of X and hence X the first coordinate vector field.

To show that Fis the inverse of a coordinate map at m we employ the inverse
function theorem. This requires that we show that F. is nonsingular at the
origin 0 in Rd, since the matrix of F. with respect to some coordinate vector
basis is the jacobian matrix. The values of F on the basis 8/aut(o) of Rd can
be found by mapping the curves to which they are tangent. We have already
done this for a/au'(0), so we know that F*(a/au'(0)) = X(m). The other co-
ordinate curves through 0 have s = 0, so that Fcoincides with 0-' on them.
It follows that F*(alaut(0)) = alayt(m), i > 1. Since F maps a basis into a
basis, it is nonsingular. By the inverse function theorem there is a neighbor-
hood U of m such that F-' _ (x', . . ., xd) is defined and Cm on U.

Problem 3.5.1. (a) If {µ,} is the flow of al and {Bt} is the flow of 82i show that
µ,o 0, = 0,oµ,for all sand t.

(b) Suppose X and Y are C°' vector fields with flows {µ,} and {B,}, re-
spectively, such that µ, o B, = 0, o µ, for all s and t. If X(m) and Y(m) are
linearly independent, show that there are coordinates at m such that X = al
and Y = a2 in the coordinate domain.

(c) Generalize (a) and (b) to k vector fields, where k 5 d.

3.6. Lie Derivatives
If X is a C°° vector field, then X operates on C`° scalar fields to give Cm scalar
fields. The Lie derivation with respect to X is an extension of this operation to
an operator Lx on all C° tensor fields which preserves type of tensor fields.

Let {µ,} be the flow of X and let in be in the domain of X. It follows from the
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definition of it. that it has an inverse, ti, , and since both are C 11, is a dif-
feomorphism. Hence for each s for which µm is defined, µ,* is an isomorphism
M. -* M,,, where ys = µ,m. If {e,} is a basis of Mm, then {µ,,,e,} is a basis of
M,,. The vectors E,(s) = µ,,,e, form curves in TM lying "above" the integral
curve y of X starting at m and giving a basis of the tangent space at each point
ys. We say that the E; form a moving frame along y.

If T is a C°° tensor field defined in a neighborhood of m, then the com-
ponents of T(ys) with respect to the basis E,(s) are C°° functions Ta of s,
« = 1, ..., d', where we have numbered the components in some definite way.
The derivatives Ua = dTa/ds are the components of tensors U along y; that is,
U is a function of s such that U(s) is a tensor over M,,. The tensor-valued
function U is independent of the choice of initial basis {e,} of M. For if we take
a new basis {f,} and let F,(s) = µ,*f, then, letting f = a;ef, we have F, = a;E,,
since the µ,* are linear. Here the a are constants, not functions of s. Thus the
components of T with respect to the e and f bases are related by constant
functions of s, where i4 is summed from I to d', so that the
s-derivatives are related in the same way and are therefore the components of
the same tensor-valued function U with respect to the different bases. By
varying m we obtain values for a tensor field at points other than those on a
single curve.

The tensor field derived from T in the above way by differentiating with
respect to the parameters of the integral curves of X is called the Lie derivative
of T with respect to X and is denoted LxT.

In the following proposition we list some of the elementary properties of
Lie derivatives.

Proposition 3.6.1. (a) If T is a C' tensor field, then LxT is a C m tensor field
of the same type as T, defined on the intersection of the T and X domains.

(b) LET has the same symmetry or skew-symmetry properties as T does.
(c) Lx is additive: Lx(S + T) = LES + LxT.
(d) Lx satisfies a product rule, so it is a derivation:

Lx(S ® T) = (LxS) ® T + S ® LET.

(e) In the case of a scalar field f, Lxf = Xf.
(f) If X = a1i the first coordinate vector field of some coordinate system, then

the components Ua of LxT with respect to the basis 8, are 131Ta, the first co-
ordinate derivatives of the components of T.

Proof. The first five are simple consequences of the definition. For (f), if
X = 8,, then we have seen that µ in the coordinate domain, is the translation
of the first coordinate by amount s. This translation takes coordinate curves
into coordinate curves and hence also takes coordinate vector fields into them-
selves; that is, µ,*i?, = i3;. Thus if we let e, = b,(m), then E, = i, and the
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components of T with respect to the E, are just the coordinate components
of T. Differentiation with respect to s is clearly the same as applying al.

It is an interesting computation to verify directly that the process of (f) does
not depend on the coordinate system used for which X = a,. That is, if we
suppose that X = a/ax' = alay', then the same result is obtained by dif-
ferentiating the x'-components of T with respect to x' as by differentiating the
y'-components of T with respect to y'. Indeed, we have where
the A, are products of the ay'/axi and the ax'/ayi. But we have

X ayi _ a2yi _ a ayi _ a ay' = a s' = 0
axi ax' axi axi ax' axi ay' axi 1

and, similarly, X(ax' /ayk) = 0. It follows that XA1, = 0, so AsXTx,B
Thus and are the components of the same tensor with respect to
the different bases.

Remark. The x' coordinate components of LXT can be expressed algebraically
in terms of the x' components of Lxa,, LX dx', and XTa, where the T" are the
components of T. This follows from (c), (d), and (e), since T = TaPa(a,, dxi),
where Pa(a,, dxi) is a tensor product of the a, and dxi.

Problem 3.6.1. Prove that µ,*X(m) = X(µ,m) and that LxX = 0.

Theorem 3.6.1. Let X be a C °° rector field, T a C °° tensor field, x' coordinates
with coordinate vector fields a,, X i = Xx' the components of X, and T;; ;;

those of T. Then the components of LxT are
r

(LxT)ii ;; = XT ; - T'ii i;-lhia.i i'ahxia
a =1

+ Ti, ia-ihia.i i.aiaXh (3.6.1)
a=1

Proof. We obtain the validity of the formula at points for which X 0 0 by
using Proposition 3.6.1(f) and the transformation law. The zeros of X will be
handled as special cases. We suppose T has type (1, 1) and it will be evident
what modifications in the proof are necessary for other types.

If X(m) 54 0, then by Theorem 3.5.1 there are coordinates y' at m such that
X = a/ay'. By (f), if U = LXT we have and the xi components
of X are X' = Xxi = ax'/ay'. Thus

`ykUx'J = ax a
ayh axi

=
axi ayk

ayh axi

_ X T" ay' ax° ax, ayk

axp ayk ayh \axi

= XT=.i + Tz.p(X ayh
I axi + Tx., (X ax°' ayk

i ` axp/ ayh 4 ayk
axi.
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Now we would like to eliminate the y' coordinates:

X ax,
'. ax) ay" _ `Y(ax ayh) aXn `Y ayh

ayh a aX'= xs, _ aXP ay" ayh

ayh a ax.
=o aXnayh ay,

ax'

ayka (XXQ) -aXQ

axt ay - aX, .

These may now be substituted above to give (3.6.1).
For those m such that X(m) = 0 we have two cases:
(a) If there is a neighborhood of m such that X = 0 in that neighborhood,

then µ, is the identity map on that neighborhood, so that the components of T
with respect to fi,*e, = e, are simply the components of T with respect to e,.
The s-derivatives vanish, so (LXT)m = 0. But the X' are identically 0 in the
neighborhood so (ahX')m = 0, and finally (XT'I,)m = X(m)T; = 0. Thus both
sides of (3.6.1) are 0.

(b) Otherwise m is a limit point of a sequence on which X is nonzero. The
formula (3.6.1) is valid on the sequence and both sides are continuous, so'
(3.6.1) is proved valid at m by taking limits. I

Corollary. Lx + r = Lx + L.

Problem 3.6.2. For a scalar field f prove that Lx df = d(Xf).

Problem 3.6.3. Prove that Lx commutes with contractions (see Section 2.14);
that is, if C is the operator which assigns to a tensor its contraction on the pth
covariant index and qth contravariant index, then Lx(CT) = C(LxT).

Problem 3.6.4. For C- vector fields X and Y and 1-form B prove that
X<Y, 0> = <LxY, 0> + <Y, LxO>.

Problem 3.6.5. For C°° vector fields X and Y and scalar field f prove that
(LxY)f = XYf - YXf and hence that XY - YX is a vector field and
LxY = -L,X.

Problem 3.6.6. The Lie derivation Lx commutes with the symmetrizing and
alternating operators .50' and .4, and therefore Lx is a derivation with respect to
symmetric and exterior products of symmetric and skew-symmetric tensors of
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unmixed types. That is, for symmetric tensor fields T and U, LX(TU) _
(L1,T)U + TLxU, and for skew-symmetric tensor fields T and U,

Lx(TA U) = (LxT) A U + TALxU.

Problem 3.6.7. Show that
LxL,. - L1.Lx = LLA Y. (3.6.2)

Problem 3.6.8. (a) If A is a tensor field of type (1, 1), we may view A as a
field of linear functions, A(m): M. -± Mm. Show that there is a unique ex-
tension D,, of A to a derivation of tensors such that for vector fields X we have
DAX = AX and

(1) For each tensor field T, DAT is a tensor field of the same type as T.
(2) For tensor fields T and U we have the product rule, DA(T ® U) _

(DAT) ® U + T& DAU.
(3) DA is additive: DA(T + U) = DAT + DAU.
(4) DA commutes with contractions, C(DAT) = DA(CT).

Show that for scalar fields f, DAf = 0.
(b) In the notation of Section 2.12 the linear function on M. given by A(m)

should be written A(m)2: M. -- Mm. Show that in the same notation the
restriction of DA to covariant vectors is DAIMm* = -A(m)1: Mm* --> Mm*.

(c) Prove that L,x = fLx - Dx®an where X is a vector field and f is a scalar
field. (Hint: Since both sides are derivations which commute with contractions
the identity needs to be verified only on scalar and vector fields.)

(d) If T is of type (2, 1), then the component formula for DAT is (DAT)k =
TT'AI + Tk''A' - TD'Ap. Generalize this formula to other types. (In particular,
DA is entirely algebraic, requiring no derivatives of the A or T components.)

Problem 3.6.9. Suppose that X and Y are C' vector fields, that X(m) and
Y(m) are linearly independent, and LxY = 0. Let {µ,} be the flow of X and
suppose that for some number b the domain of Y includes all the points µ,m
such that s is between 0 and b. Prove that X(pbm) and Y(µbm) are linearly
independent.

Problem 3.6.10. Suppose that LxY = 0 and Y(m) = aX(m). For a number
b as in Problem 3.6.9 prove that Y(Jbm) = aX(µbm).

Problem 3.6.11. For the vector field X = (ax - by) 3 + (bx + ay)8 on E2,
where a and b are constants, show that Lxg = tag, where g = dr ® dx
+ dy 0 dy is the euclidean metric of E2.
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3.7. Bracket
An important special case of a Lie derivative is the Lie bracket of two C-
vector fields, [X, Y] = L, Y. In Problem 3.6.5 we have given another formula
for bracket, and it is this which we take as our working definition, to be used
for further development: [X, Y] = XY - YX, where the product XYis to be
understood as the composition of the operators Y and X on scalar fields. With
this definition it is not a priori clear that it is a vector field, since XY and YX
are second-order partial differential operators, but not usually vector fields. It
is clearly additive but the product rule needs verification:

(XY - Yx)Ug) = X[(Yf)g +fYg] - Y[(Xf)g +fXg]
= (XYf)g + (Yf) Xg + (Xf) Yg + fXYg - (YXf)g

- (Xf)Yg - (Yf)Xg -fYXg
= [(XY - YX)fjg + f(XY - YX)g.

Of course, this verification is unnecessary if we adhere to the Lie derivative
approach, as in Problem 3.6.5.

The bracket of two coordinate vector fields from the same coordinate system
is 0 because second partial derivatives are the same in either order on C°°
functions: 0,0,f - a,a,f = [a,, ajf = 0. However, for two coordinate systems
x` and y' it is not generally true that alax' and alayJ commute. For example,
on R2 we have the two coordinate systems x, y and r, 0 and it is easily
computed that [0X, a,] = (-sin 0/r2)a9.

If X' and Y' are the x` coordinate components of vector fields X and Y,
respectively, then the components of [X, Y] are

[X, Y]' = [X, Y]x'
= XY' - YX'
= XJa,Y' - YJa,X'.

This formula makes it obvious that the bracket Y) -a [X, Y] is
not some interpretation of a tensor field. Indeed, a tensor field only deals with
the components, not the derivatives of the components of the variables. Some
tensor properties are valid for bracket: It is additive in each variable:

[X+ Y,Z]= [X,Z]+[Y,Z],
[X, Y + Z] = [X, Y] + [X, Z],

and skew-symmetric:
[X, Y] = -[Y, X].

The other linearity property fails and we have instead

VX gY] = (fX)(g Y) - (gY)UX)
= f(Xg)Y + fgXY - g(Yf)X - gfYX
= fg[X, Y] + f(Xg) Y - g(Yf)X.
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Of course, when f and g are constants the last two terms vanish.
Another property is the Jacobi identity:

[[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0.

The proof is automatic.
There are other interpretations of the Jacobi identity, one of which is the

formula (3.6.2) of Problem 3.6.7 as applied to vector fields. If we define the
bracket of any operators A, B to be [A, B] = AB - BA, then (3.6.2) may be
written [Lx, L,.] = L[x,,.]. This may be thought of as telling us that L: X --> Lx
is a Lie algebra homomorphism; a Lie algebra is a vector space provided with
an internal product, called the bracket operation, which is skew-symmetric,
bilinear, and satisfies the Jacobi identity. The Lie algebras connected by the
homomorphism L are infinite-dimensional vector spaces-the space of C'
vector fields and the space of derivations of tensor fields. Another interpreta-
tion of the Jacobi identity is that Lx is a derivation with respect to bracket
multiplication :

Lx[ Y, Z] = [Lx Y, Z] + [Y, LXZ].

Problem 3.7.1. Let X, Y, Z be the vector fields on R3 with components
(0, z, -y), (-z, 0, x), (y, -x, 0), respectively, with respect to cartesian co-
ordinates x, y, z. Show that the correspondence

µ:aX+bY+cZ->ai+bj+ck
is not only a linear isomorphism but that under µ brackets go into cross pro-
ducts: µ[U, V] = (µU) x (µV). Consequently, ordinary three-dimensional
vector algebra with cross product multiplication is a Lie algebra, and in
particular, the cross product satisfies the Jacobi identity.

Problem 3.7.2. For U = aX + b Y + cZ as in Problem 3.7.1, show that the
flow of U is a rotation of R3 about an axis through 0, with angular velocity
-µU.

Now we extend Theorem 3.5.1 to the case of two vector fields.

Theorem 3.7.1. Let X and Y be C `° vector fields such that [X, Y] = 0 and
suppose m is a point for which X(m) and Y(m) are linearly independent. Then
there are coordinates at m such that X = dl and Y = 82 in the coordinate
domain. For s and t sufficiently close to 0 and on a neighborhood of m,
µs ° Bt = Bt o p., where {µs} and {Bt} are the one parameter groups of X and Y.

Proof. The second statement follows from the first, since coordinate trans-
lations commute. The proof of the first is similar to the proof of Theorem
3.5.1. Choose coordinates yt in a neighborhood of m such that ytm = 0 and
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X (M), Y(m), a/ay3(m), ... , a/ayd(m) are a basis of Mm. Define F: V + M,
where V is a neighborhood of 0 in Rd, by

F(s, t, a3, . ad) = t-a Btu- 1(0, 0, a3, . ., ad),

where p = (y1, ..., yd). Just as in Theorem 3.5.1. we prove that F,k is non-
singular on RIO, so that F-1 = (x'..... x') exists and is a coordinate map in a
neighborhood of m. Moreover, X = al is proved as before and if we restrict to
points where x' = s = 0, we have Y = a2.

The x1 components of Y are Yx'. At points of the slice x' = 0 we have just
seen that Yx' = 82. Now we show that if we move crossways to the slice on
the x1 coordinate curves YY' does not change. In fact, since [X, Y] = 0, we
have X(Yx') = Y(Xx') = YS; = 0. Thus Yx' = SZ on all points which can
be reached on an x1 coordinate curve starting at a point where x1 = 0. Since
such points fill a neighborhood of m we are done. I

It requires no additional technique to extend Theorem 3.7.1 to any number,
up to d, of commuting, linearly independent vector fields. We state the result
without further proof.

Theorem 3.7.2. Let X1...., Xk be C vector fields such that [Xi, X,] = 0 for
all i, j, and let m be such that X, (m), ..., Xk(m) are linearly independent. Then
there is a coordinate system at m such that Xi = ai, i = 1, ..., k, on the co-
ordinate domain.

3.8. Geometric Interpretation of Bracket
We have seen in Theorem 3.7.1 that the flows of X and Y commute if
[X, Y] = 0. The commutativity of t, and Bi on m may be written

B-tµ :Deµsm = m.

In general, the effect of applying 9_ip _,Biµs to m is to push m along the sides
of a "parallelogram" whose sides are integral curves of X, Y, - X, and - Y,
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in that order (see Figure 12). We shall now see that these "parallelograms"
are not usually closed curves, but that the gap between the first and last point
is approximately st[X, Y](m). Thus the bracket is a measure of how much such
parallelograms fail to close.

If we replace Y by (t/s) Y = Z, then the same parallelogram is the paral-
lelogram for X and Z but for which the parameter changes along each side are
all equal to s. Thus without loss of generality we may assume s = t.

We give two formulations of the same result, one in terms of coordinates
and one intrinsic.

Theorem 3.8.1. (a) Let x' be coordinates at m with x'm = 0 and let [X, Y](m) _
c'2,(m). Then the Taylor expansion of ys = 0 _,µ _,0,µm has the form

x'(ys) = c's2 + g'(s)s3, where g' is C

(b) With y as in (a), y*O = 0 and y,**0 = [X, Y](m).
(For the definition of the second-order tangent y. O, see Problem 1.6.1.)

Proof. It is easily seen that part (a) is simply the coordinate form of part (b),
so it suffices to prove part (a).

If X(m) = Y(m) = 0, then [X, Y](m) = 0 (this is left as an exercise) and
µ, and 0, leave m fixed for all s, so ys = m, x'(ys) = Os2, and c' = 0. This
proves the result in this case.

Thus we may assume one of X(m) and Y(m) is nonzero. We shall do the case
X(m) # 0, leaving the case X(m) = 0 and Y(m) 0 0 as an exercise. We use
this proof as an illustration of two important techniques:

(a) Choosing the coordinates to fit the problem. For this problem we can
simplify µ, by choosing coordinates for which X = 81. Then µ, is a translation
by s in the xl direction.

(b) Using finite Taylor expansions. In using these expansions we guess what
order will suffice and retain only those terms in computations which do not
exceed that order. If too few terms are retained, the computation must be
started over with more terms. If too many terms are retained, the procedure is
more laborious than necessary but otherwise no harm is done.t

We suppose that coordinates x' have been chosen such that X = a,,
x'm = 0, and the components of Y, Y' = Yx' have Taylor expansions of the
second order,

Y' = b' + b',x' + g'kx'xk,

where the grk are C m functions on M and b' and b'f are constants.

t The use of infinite Taylor series would display similar technique but requires the
assumption that the series converge, not generally valid for C°° functions.
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First we relate the components of [X, Y](m) to the expansion of Y':
C' = ([X, Y]x')m

= (81 Yx' - Ya1x')m
= (a1 Y')m
= bi.

Now we compute the expansions of the coordinates of the corners of the
parallelogram in turn, in powers of s. For this we must also compute the
equations for the integral curves, which we parametrize by u. In these equations
we shall use expansions of the third order in s and u for coordinate functions
and second order for their derivatives. Instead of using specific notation for
the remainder terms, we shall merely indicate them by 0(3) or 0(2). Thus
0(2) will stand for a number of different functions of s and u, all having the
form 0(2) = a(s, u)s2 + P(s, u)su + y(s, u)u', where a, P, y are C °° functions.
Similarly, 0(3) will denote something in the form of a homogeneous cubic
polynomial in s and u with C m coefficients.

For the first corner after m we have

xtµ,m = Sis, (3.8.1)

since µ, is translation by s in the x1-direction and m is the origin.
Now we let g' = x'O,,a m. As a function of u these are the coordinates of the

integral curve of Y starting at µ,m, so the terms not dependent on u are given
by (3.8.1), and g' has the form

g' = Sis + aiu + a;su + a3u2 + 0(3).

The differential equations for an integral curve of Y must be satisfied by these
g', so we have

u = a, + as + 2a4u + 0(2)

=b'+b,g'+0(2)
= b` + Ms + b}aiu + 0(2).

Equating coefficients we get

a1 = b`, a`3 = bi, a3 = b'!b'/2,

so the next corner of the parallelogram has coordinates

g'(s, s) = (811 + b)s + (bi + b''b'/2)s' + 0(3).

Translating the first coordinate by -s gives us the third corner,

xtµ_,8dL,m = b's + (bi + b',b/2)s' + 0(3).

These are used as initial conditions for the integral curve forming the fourth
side of the parallelogram.
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Letting h' = we have

h'=b's+a;u+(bi+bib'/2)s'+a5su+al u2+0(3).

The differential equations for an integral curve of - Y are

8u=a,+a5s+2agu+0(2)
_ -bt - b''h' + 0(2)
_ -b' - bib's - bialu + 0(2).

Comparing the two expansions gives

at = -b', a5 = -bib', a's = -bia4J/2 = bib'/2.

Now we have the desired expansion of y:

x'(ys) = h'(s, s)
= (b' - b')s + (b; + bib'/2 - b1b + b',b'/2)s2 + 0(3)
= b's2 + 0(3)
= c's2 + 0(3).

Problem 3.8.1. Compute the curve ys = directly in the following
instances, verifying that its Taylor expansion has the form specified in Theorem
3.8.1:

(a) M = R, X = d/du, Y = uX.
(b) M = R2, X = 8x, Y = x8y. Sketch some of the parallelograms in this

case.

3.9. Action of Maps
If (p: M N is a C°° map we have seen that there are corresponding maps
q7*m: M,n _± Nmm, which map individual tangent vectors to M. However, it is
not generally possible to map vector fields into vector fields via q),,, since 9, can
map two points m and m' into the same n c N and it may happen that
t*X(m) 54 9,* X(m') for a given vector field X on M. Thus we may not be able
to assign a unique value to (q)*X)m. Even if we were able to assign unique values
there is no assurance in general that the result is C`° if X is C. For example,
the image pM may not be an open set, and a continuous extension of p*X to
a larger set which is open may be impossible.

We say that vector fields X and Y on M and N, respectively, are qrrelated
if for every m in the domain of X, p*X(m) = Y('pm). Equivalently, we have
that X and Y are p-related iff for every C°° function f: N- R, (Yj) o 9 =
X(f o c). Indeed, the values at m E domain of X of both sides of this equation
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are (Yf) o pm = Y(pm)f and X(f o cp)m = X(m)(f o p) = (p,X(m))f, so
equality at m is the same as p* X (m) = Y(pm).

Proposition 3.9.1. If X, is p -related to Y,, i = 1, 2, then [XI, Xa] is p-related

to [Y1, Y2]

Proof. For allf: N -± R we have

([Y1, Ya1f)o4' _ (Y1Y2f- Y2Y,f)op
_ (Y1(Y2f))op - (Ya(Y1f))op
= Xl((Yaf)op) - X2((Yl1)op)
= Xj(X2(f o 4')) - X2(Xj(f o p))
_ [XI, X2](fo 4') 1

A C °° map p: M --> N is regular if for every m e M, 9*m is 1-1 on Mm.

Lemma 3.9.1. If p is regular, then for every m c M there are coordinates y° at
pm, a = 1, ..., e, such that x' = y' o p, i = 1, . . . , d, are coordinates at m.

Proof. The fact that P*m is 1-1 can be expressed in terms of a matrix for
9)*m by the condition that some d x d submatrix, obtained by omitting a-d
rows, be nonsingular. If we choose coordinates z' at m, then any coordinates
y° at pm can be numbered so that the first d rows of the matrix (ay° o p/az'(m))
of *m, with respect to the bases 8/8z'(m) and 8/8y°(pm), is a nonsingular sub-
matrix. But this simply means that the functions x' = y' o p, i = 1, ..., d, are
related by the nonzero jacobian determinant, det(8x'/8zJ(m)), to the co-
ordinates z', so the x' are a coordinate system at m. 1

Proposition 3.9.2. Let p be regular and let Y be a C vector field on N such
that for every m e p-1 (domain of Y), Y(pm) E p*Mm. Then there is a unique
C°° vector field X defined on p-' (domain of Y) which is p--related to Y.

Proof. It is clear that X is unique, for X(m) _ p*m (Y(pm)), which makes
sense since p*m: Mm -* Nmm is 1-1 and contains Y((pm) in its range.

To show that X is C we compute its components with respect to co-
ordinates x' = y' o p) as in Lemma 3.9.1. Indeed, X' = Xx' = X(y' o p)) _
(Yy') o p = Y' o p, where Y° are the components of Y with respect to the y°
coordinates. Thus X' is Cm, since Y' and p) are C°°. I

The notion of prrelatedness is easily extended to contravariant tensor fields.
The linear function P*m has an extension to a homomorphism of the algebra of
contravariant tensors over Mm, which means that the extension is linear and
commutes with tensor product formation: p*m(A ® B) = (pD*mA) ® (p*mB),
for all contravariant tensors A and B over Mm. Then we define contravariant
tensor field S on M to be p'-related to contravariant tensor field Ton N if for
every m e (domain of S), p*mS(m) = T(gpm). The following lemma is not dif-
ficult to prove and has the generalization of Proposition 3.9.1 as an almost
immediate consequence.
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Lemma 3.9.2. If X is p-related to Y, {µ,} is the flow of X, and {B,} the flow of Y,
then for every s, q' o µ, = B, 0 9); that is, the following diagram is commutative

M--f- N
µ. 1 1 9,

M--f, N

(To prove this show that q) maps an integral curve of X into an integral
curve of Y.)

Proposition 3.9.3. If C°° contravariant tensor fields S and T are 9'-related and
C m vector fields X and Y are 9'-related, then LxS is 9>-related to LET.

(Proof omitted.)

If T is regular, then Proposition 3.9.2 also extends to contravariant tensor
fields with very little effort.

The situation for covariant tensor fields is quite different. First of all, the
direction in which they are mapped is opposite to that of contravariant tensors,
since the dual of 9'*m: M. - N*,,, is the "transpose" 91*m: Norm --r M*, defined
by the relation <p* v, r> _ <v, q, r> for all v a M. and r a Nmm. For this
reason the classical names "contravariant" and "covariant" are backwards
from a mapping-oriented viewpoint, since the tangent vectors go "with" the
map p and the dual vectors go "against" q'. From this viewpoint names such as
"tangential tensor fields" and "cotangential tensor fields" would seem more
appropriate.

Second, there is no problem of existence for q,-related covariant tensor fields,
whereas with contravariant fields we only have results when we assume the
9'-related fields are given and we have proved existence only under the re-
strictive assumption that 9) is regular. Even then the existence result was in a
peculiar direction, reverse to the direction in which individual contravariant
tensors map. The following result for covariant fields is more natural and
inclusive.

Proposition 3.9.4. Let T be a C m covariant tensor field on N. Then there is a
unique C°° covariant tensor field S = p*T defined on E = T-1 (domain of T)
such that for every m e E,'n*,T('m) = S(m). (Here p,,* has been extended as
a homomorphism.) An alternative definition is that for v1, ..., va E Mm,
S(vl,..., v,,) = T(rp*mvl...... '*mvq), where (0, q) is the type of T.

Symmetry and skew-symmetry are preserved by 9'*. Moreover, 9'* commutes
with the symmetrizing and alternating operators, so is a homomorphism of the
covariant symmetric and Grassmann algebras.



Q.9] Action of Maps 141

Proof. To show that the two definitions are equivalent we compute as follows
on a typical term of T, where r1i ..., .r, are chosen from a local basis of 1-
forms dya, and f is a C °' scalar field on N:

(pmfr1 (9 ... ® r)(v1, ..., va) =f(pm)pmTl(vl)...pmr9(v,)

= f(9'm)<v1, pmr,> ... <Vq, 9' Tq>
= f(pm)<p*mvl, Tj>... <9*mva, Tq>

= f(91m)T1
®...(& T9(1F*mvl, ...) p'*mva)

To show that p*T is C it suffices to prove it for C m scalar fields and basis
1-forms dya, since in general *T is a sum of products of *f s and 9'*dya's.

For a scalar field f we have (rp*f )m = f(pm) = (f o p)m, that is, p*f = f o p,,
which is C' if f is C'.

If x' are coordinates at m and ya coordinates at pm, then the matrix of 1'*,
with respect to bases a/ax'(p) and a/aya(pp) is (a(ya o p)/ax'(p)), where a is the
row index and i is the column index; p is any point in the x' coordinate domain.
The transpose, with the same entries but with i as the row index and a as the
column index, is the matrix of p, . Thus we have 9,* dya = [a(y° o pp)lax'] dx'
d(ya o p), which is C °° since yo and 9) are C

The fact that p* preserves symmetry and skew-symmetry and commutes
with the operators is evident from the second definition.

In terms of coordinates the operation of 9)* on a covariant tensor field T
amounts to substituting the coordinate equations for p into the coordinate
expression for T. More explicitly, suppose that the equations for p are

ya = F'(xl,, xd) = Fa(x), a = 1, , e,

and that T is of type (0, 2), with expression in the ya coordinates

T = Tas(yl, ... , ye) dya ®dyd.

Then the x' coordinate expression for p*T is

.p*T = Tas(F'(x), ..., dx' ®

Remark. It has been noted in the proof that for coordinate function yo,
p>* dya = d(p*ya). More generally, p* and d commute on any function:

(T* df)v = df(cp*v)
= (p*v)f
= vUo p)
= v(pp*f)
= (dp*f)v,

so we have p* df = d(p*f. In Chapter 4 we extend the operator d to act on
skew-symmetric tensor fields (differential forms), and the property of com-
mutation with p* will also be extended.
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Problem 3.9.1. If g is a riemannian metric on N and y: M-* N is regular,
show that p*g is a riemannian metric on M. Show by examples that if g is a
semi-riemannian metric, then c*g is not necessarily a semi-riemannian metric,
and it might also be a semi-riemannian metric of different index than g. Show
that if c is not regular and g is a riemannian metric, then c*g is not a rieman-
nian metric.

Problem 3.9.2. Let M be the hyperboloid of revolution in R3 given by the
equation x2 + y2 - z2 = -1 and inequality z > 0, let g be the Minkowski
metric on R3, that is, g = (dx)2 + (dy)2 - (dz)2 (since semi-riemannian metrics
are symmetric it is customary to use symmetric product notation in writing
them), and let p: M -* R3 be the inclusion map. Show that h = *p*g is a
riemannian metric on M. The riemannian manifold (M, h) is called the hyper-
bolic plane. [It has constant curvature -1 (see Section 5.14) and is a negative
dual of the euclidean sphere S2: x2 + y2 + z2 = 1, which has constant cur-
vature 1. Many of the properties of M are similar to those for a sphere. For
example, the geodesics (shortest paths on the surface; see Section 5.13) are the
intersections of M with planes through the origin of R3, just as the geodesics
of S2 (great circles) are intersections of S2 with planes through the origin.]

Problem 3.9.3. If T is a skew-symmetric tensor field of type (0, q) on N and
q > dim M, show that p*T = 0.

3.10. Critical Point Theory

A critical point of a C °° scalar field P. M -* R is a point m such that dfm = 0.
In terms of coordinates this means that all the partial derivatives off are 0 at
m, 2, f(m) = 0. A point m is a relative maximum (minimum) point off if there is
a neighborhood U of m such that for every n c U, fm > fn (fm < fn). If m is
a critical point, relative maximum point, or relative minimum point off, we
say that fm is a critical value, relative maximum value, or relative minimum
value off, respectively.

Proposition 3.10.1. If m is a relative maximum or minimum point off, then m
is a critical point off.

Proof. If v e Mm, let y be a curve such that y*0 = v. Then f o y is a real-
valued function of one variable such that 0 is a relative maximum or minimum
point. Hence d(f - y)/du(0) = 0 = (y*0)f = if = dfm(v), so that dfm = 0; that
is, m is a critical point off. I
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A point m is a maximum (minimum) point of f if for every n e M, fm > fn
(fm 5 fn). A maximum (minimum) point is clearly a relative maximum
(minimum) point, and hence a critical point.

If m is a critical point off, we define the hessian off at m to be the bilinear
form Hi on M. defined as follows. If v, w e Mm, let W be any extension of w
to a C ' vector field. Then

Hf(v, w) = v(Wf).
It is not immediately clear from this definition that Hf is well defined, since
there may be a dependance on the choice of extension W. Thus we need

Proposition 3.10.2. The hessian off at m is well defined and symmetric. The
components of Hf with respect to a coordinate basis aim are (8iaf f )m.

Proof. Let V be a Cm extension of v. Then we have [V, W](m)f = 0, since
dfm = 0. Hence vWf = (VWf)m = (WVf)m = wVf. In the equation vWf=
wVf, vWf does not depend on which extension V of v is used, wVf does not
depend on which extension W of w is used, and it is clear that the common
value Hf(v, w) is symmetric in v and w.

One extension of Dim is a,. Thus the coordinate components of Hf are

h,(dim, dim) = ai(m)aif = (aiaif)m I
A critical point m off is nondegenerate if Hf is nondegenerate. This is

equivalent to det ((8i8f f )m) 0 0; if we let y' = 0f, then ((8i8, f)m) =
((D,y')m) is the jacobian matrix of the functions y' with respect to the co-
ordinates. Thus we have
Proposition 3.10.3. A critical point m off is nondegenerate iff the partial
derivatives D, f = y' form a coordinate system at m.

A function f is nondegenerate if all its critical points are nondegenerate.
By choosing a basis of M. which is orthonormal with respect to Hf, and

then choosing coordinates x' such that x'm = 0 and Dim is the orthonormal
basis for Hf, we have (8i8ff)m = S,fei (i not summed), where ei = 1, -1, or 0.
We number so that the - l's are first, e, = -1, i = 1, .. , 1, and the 0's last.
The second-order Taylor expansion for fat m has the form f = fm + f fx'x',
where the f, are C- functions such that film = Sifei and f f = ff,. Now, assum-
ing not all e, = 0, we may proceed in a manner similar to the process for
diagonaliiing a quadratic function, obtaining coordinates for which f has as
simple an expression as possible /near m. Namely, we let

{y1 = (-111x1 _A2X2 - ... -fl dxd)/(-J11)1,2
and we find that the jacobian matrix of y', x2, . ., xd with respect to x1, ..., xd
is nonsingular at m, so y1, x2,. .. , xd is a coordinate system at m. Furthermore,

f = fm - (y')2 + gfx'x', where giim = Sifeii.l ? 2
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This is the first step of a recursive procedure for which the continuation should
now be obvious. In the steps for which i > 1 the formula for yi resembles that
for yl above except that all the signs are changed:

yi = (kiixi + . . . + kidx)/0 12.

The procedure ends when we have generated r new coordinates, y', ... , yr,
which together with xr+', . . . , xd form a coordinate system at m, where
d - r is the rank of H1. In terms of these new coordinates the expression
for f has the form

r
f = fm - E (yi)2 + (y')2 + E hi,xixj.rl i j> r+1

When r = d the formula has no annoying remainder with hij's. The formula ob-
tained thus says that f is a quadratic form plus a constant. This is known as the
Morse Lemma. A more trivial step is the case where the diflerential of the func-
tion is not zero at the point and hence the function may be taken as the first
coordinate function. These two steps are the substance of the following
proposition.
Proposition 3.10.4. (a) If m is not a critical point of f, then there are coordi-
nates y' such that f = y' in a neighborhood of m.

(b) (Morse Lemma.) If m is a nondegenerate critical point of f, then there
are coordinates vi at m such that

I d

f = fm _ > (yi)2 + E (y')2,
-1 ,-1+1

where I is the index of Hf.
Corollary. If m is a nondegenerate critical point of f, then m is an isolated
critical point off; that is, there are no other critical points in some neighbor-
hood of m.

Proof. It is permissible to search for critical points as we do in advanced
calculus, by equating all the partial derivatives to 0. In terms of the "Morse
coordinates" this process is very easy, since the equations simply read yi = 0
for all i. As long as we stay within the coordinate neighborhood, m is the only
solution. I

We shall call a critical point m off a quadratic critical point if there are
coordinates y' at m for which the coordinate expression for f is a quadratic
function of the yi. In particular, a nondegenerate critical point is quadratic.
However, if the nullity of Hf is not zero, then a quadratic critical point will
not be isolated. In fact, the equations for critical points show that all of the
points in a coordinate slice y' = 0, . . . , yr = 0, are again quadratic critical
points with hessians of the same index and nullity. Thus, under the assumption
that a function has only quadratic critical points the set of all critical points
has a nice structure, since these coordinate expressions show that it consists
of a union of closed, nonoverlapping submanifolds.

The classification of critical points without such special assumptions is a
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subject of intense current research. There have been remarkable developments
since the first edition of this book was published. For those who wish to pursue
the subject we point out that the book by V. Guillemin and M. Golubitsky,
Stable Mappings and Their Singularities, NY, Springer, 1974, is a thorough
introduction. However, it is not easy unless one is familiar with commutative
ring theory.

Problem 3.10.1. (a) If f = xy(x + y): R' --> R, show that f has an isolated
critical point for which HI = 0. (The shape of the surface f = 0 at the critical
point is called a monkey saddle. Why?)

(b) Show that f = x3: R' --* R has a submanifold of nonisolated critical
points, for all of which Hf = 0.

(c) What are the submanifolds of critical points off= x'y': R' -). R for
which Hf 0? Are these submanifolds closed? Are there any critical points
such that H, = 0?

(d) Show that the critical points off = x3y3: R' - R at which Hf = 0 do
not form a submanifold.

Problem 3.10.2. If f has only quadratic critical points, show that the critical
points at which H, has fixed index I and fixed nullity n form a submanifold MT
of dimension n. Moreover, MI is a closed submanifold and f is constant on
each connected component of M.

Problem 3.10.3. Let M be the usual doughnut-shaped torus contained in R3
with center at the origin and the z axis as the axis of revolution. Find the critical
submanifolds M, in the cases f = rl,y, where r is the spherical radial co-
ordinate on R3 (fm = the distance from m to 0 in R3), and f = zl,y, the
height function on M. What happens if M is pushed slightly off center or
tilted?

Problem 3.10.4. Show that if f is nondegenerate and M is compact, then f has
only a finite number, at least two, of critical points.

The problem of finding the maximum or minimum of a function on a
manifold frequently can be solved by employing Proposition 3.10.1 and, in the
more difficult cases, the other results above. The first step is always to solve for
the critical points of the function. This usually involves only a finite number of
sets of equations {a,f = 0}, since most manifolds arising in applications can be
covered by finitely many coordinate systems. Then one compares the values of
f on these critical points (or submanifolds of critical points in the more
difficult cases) and sorts out the greatest or least.

Sometimes the manifold M is a hypersurface or the intersection of hyper-
surfaces of another manifold, and f is the restriction to M of a function (still
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called f) on the larger manifold N. A hypersurface is determined, at least
locally, as a level hypersurface g = c of a function g on N, such that dg j4 0
on M. We can express the condition for a critical point off on the hyper-
surface g = c by the method of lagrangian multipliers. The rule is that we solve
the equations df(n) = A dg(n), gn = c simultaneously for A and n, and then n
is a critical point of f IM. This rule is proved easily by using the fact that there
are coordinates on N in any neighborhood of n e M which have the form
xl = g, x2, ..., x4. Then y2 = x2I M, .. , yd = x"I M are coordinates on M
and if df = A, dx' on N, the restriction to M is d(f IM) = :E,>1A dy'. Thus the
condition that f I M have a critical point at n c N is that n e M (gn = c) and
that Ain = 0, i > 1; that is, df(n) = (Aln) dg(n).

If M is the intersection of hypersurfaces g, = Cl, ..., gk = Ck, then it is
easy to generalize the rule as follows:

Solve df(n) = A dg,(n) and gn = ca, a = I, ..., k, simultaneously
for All ..., Ak and n. In applying this rule, the g. and f may be expressed in
terms of any convenient coordinates z' on N, of course.

Example. Suppose we wish to find the maximum off = xy + yz - xz on
the sphere S: x2 + y2 + z2 = 1. In the direct method we would choose several
coordinate systems which cover S (say, x, y, z in pairs restricted to various
hemispheres) and express fin terms of them [substitute z = (I - x2 -y2)1"2
in f, etc.], and solve for the zeros of the partial derivatives. In this case the
method of langrangian multipliers is simpler. We need to solve df = A dg;
that is,

(y-z)dr+(x+z)dy+(y-x)dz=A(2xdx+2ydy+2zdz)
and x2 + y2 + z2 = 1 for x, y, z, and A. That is,

y-z=2Ax,
x + z = 2Ay,
y - x = 2Az,

or in matrix form,
2a I -1 x

I -2A 1 y =0.
-1 1 -2A

Since (x, y, z) (0, 0, 0), the matrix must be singular, so its determinant
-8A3 + 6A - 2 = 0. The roots of this are A = -1, 1/2, 1/2.

If A = -1, we get y = -x and z = x from the linear equations. Then
from g = I we get

(1) (x, y, z) = (1/V3, -1/V3, l/V3)
or

(2) (x, y, z) = (-1/V3, 1/x/3, -1/v/3).
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If A = 1/2, we get only z = y - x from the linear equations. Since this is a
plane through the origin, the intersection with M is the great circle in that
plane, a critical submanifold of dimension 1 which is connected. Hence fIM
is constant on this submanifold and we need to check the value only at one
point, say at

(3) (x, y, z) = (1/x/2, 1/x/2, 0).
Since f is quadratic in x, y, z, it has the same values on opposite points,

fp = f(-p), so the values on the first two points (1) and (2) are the same,

f(1/V/3, -1/x/3, 1/x/3) = -1/3 - 1/3 - 1/3 = -1.
On the critical submanifoldf has value f(1/i/2, 1/x/2, 0) = 1/2.

We conclude that f has two minimum points (1) and (2) and a great circle of
maximum points: z = y - x, x2 + y2 + z2 = 1.

An elaborate theory (Morse theory) has been developed by Marston Morse
which relates the number and types of critical points to certain topological
invariants of M called Betti numbers (see Section 4.6). This theory can be used
in either direction ; that is, a knowledge of these invariants can be used to assert
the existence of critical points of certain types, and in many cases the Betti
numbers can be computed by a judicious choice of a function for which the
critical point structure is easily calculated.

The theory is applicable to any C°° function on a compact manifold. For
functions on noncompact manifolds it is assumed that the level sets, f° =
{m I fm < c}, are compact, at least until c is large enough so that f ° contains
all the critical points. It is easier to apply the theory in the case when f is non-
degenerate, since then it only involves counting the number of critical points,
M,, for which Hf has index I. We call M, the Ith Morse number off. To show
that the easiest case of his theory is quite general, Morse has shown that any
C°° function can be perturbed slightly so that it becomes nondegenerate
(cf. Problem 3.10.3, where a slight displacement of the torus causes the height
and radial functions to become nondegenerate).

We illustrate Morse theory by giving a direct plausibility argument for the
case of a function having only quadratic critical points on the sphere S2. Since
there are only two connected one-dimensional manifolds, R and the circle S',
and the components of the one-dimensional critical submanifolds must be
closed, hence compact (Problem 3.10.2), the only critical submanifolds consist
of isolated points (zero-dimensional) and circles (one-dimensional). (The only
two-dimensional submanifolds of S2 are open submanifolds, and if one such
is also closed, then by the connectedness of S,' it must be all of S2. Hence
if f has a two-dimensional critical submanifold, f is constant, contradicting
the hypothesis that the critical points are of the quadratic type.) We further
classify the connected critical submanifolds by the index, using the following
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descriptive terms, arrived at by thinking off as being an "elevation function"
on an earthly surface. The connected critical submanifolds are isolated (they
are contained in an open set having no other critical points) and hence finite
in number (by the compactness of S2).

M$ = those critical points at which Hf is positive definite
= a finite number P0 of points, the pits (local minima).

M; = those critical points at which H, is nondegenerate and indefinite
= a finite number P1 of points, the passes (saddle points).

M2 = a finite number P2 of points, the peaks (local maxima, Hf negative
definite).

Mo = those points m at which f has a local coordinate expression fm + x2,
x and y coordinates, nonisolated local minima

= a finite number Ro of circles, circular valleys.
M; = a finite number R1 of circles, circular ridges, which are nonisolated

local maxima.
We reiterate that our assumption of quadratic critical points forces the com-
ponents of the set of critical points to be compact submanifolds, hence circles
or points; there can be no segment-type ridges, since at the end of such a ridge
there would be a critical point which is not quadratic.

We shall obtain the Morse relation P2 - P1 + Po = 2 by the following
device. (The integer 2 is a topological invariant of S2, called its Euler-Poincare
characteristic.) View the surface as an initially bone dry earth on which there is
about to fall a deluge which ultimately covers the highest peak. We count the
number of lakes and connected land masses formed and destroyed in this
rainstorm to obtain the result.

For each pit there will be one lake formed.
For each pass there will be either two lakes joined (there are P11 of this type),

or a single lake doubling back on itself and disconnecting one land mass from
another (there are P12 of this type).

For each peak a land mass will be eliminated.
For each circular valley a lake and a land mass will be formed.
For each circular ridge two lakes will be joined and a land mass inundated.
Thus we have

number of lakes formed = Po - P11 + Ro - R1,
number of land masses formed = P12 - P2 + Ro - R1,
initial situation: one land mass,
final situation: one lake,
lake count: 0 + P0 - P11 + Ro - R1 = 1,
land count: I + P12 - P2 + Ro - R1 = 0.

Subtracting the last two equations and using P, = P11 + P12 gives
P2-P1+Po=2,

as desired.
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Problem 3.10.5. Modify the above procedure to obtain the corresponding
result for a function on a toroidal earth: P2 - Pl + Po = 0. (The Euler-
Poincare characteristic of the torus is 0.) Note that twice two lakes will join in
each direction around the torus without disconnecting any land mass.

Problem 3.10.6. Construct a function on the torus which has only three
critical points. Why must at least one be nonquadratic?[Hint: View the torus
as an identified square. Divide it into two triangles by a diagonal, put a maxi-
mum in the inside of one triangle, a minimum inside the other, and a monkey
saddle at the vertex (the identified corners) so that the edges of the triangles
all have one f-value.]

Problem 3.10.7. Let f be a C m function on the plane R2 such that f ° is com-
pact for every c and such that f has only quadratic critical points. Show that
the connected critical submanifolds are either points (zero-dimensional) or
circles (one-dimensional). If there are only a finite number of them, show that
P2 - Pi + Po = 1 and Pt + Rt > Po - 1. (The notation is the same as in
the above example. The Euler-Poincare characteristic of R2 is 1. The inequality
is another Morse relation, which is trivial in the case of compact manifolds
because for them it follows from the existence of both a maximum and a
minimum.)

3.11. First-Order Partial Differential Equations

In this section we are concerned with partial differential equations of the
simplest sort, linear homogeneous first-order partial differential equations in
one unknown. If f is the unknown, these have the form

XYJ=0.
We shall also treat systems of such equations, that is, the problem of finding an

f which simultaneously satisfies

X11aJ = 0,
X2aJ = 0,

Xkaf = 0.

By linear we mean that if f and g are solutions and a is any real number, then
afand f + g are solutions. Thus the solutions form a vector space. By homo-
geneous we mean that the right sides of the equations are zeros.

One of our goals is to generalize the formulation of the problem from a
search for a function f on a coordinate neighborhood to a search for a function
on a manifold.
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The reason we can treat these problems here is that they are not, in a sense,
partial differential equations at all, since their solutions, when possible, are
obtained by means of ordinary differential equations and the use to which they
have been put in the study of flows of vector fields.

As a first step we simplify our notation for the problem by writing Xa =
X'a8,, a = I, ..., k, so what we are looking for are functions annihilated by
the k vector fields X,, ..., Xk; that is,

Xaf = 0, a = 1,...,k.

We assume that the maximum number of linearly independent Xa(m) is
constant as a function of m. It is not that the case where this number is non-
constant is uninteresting, but it is more difficult and would require nonuniform
techniques from point to point. Thus if the number of linearly independent
X,,(m) varies as a function of m, we call the problem degenerate. With the
assumption of nondegeneracy, if, say, X,(m),..., X,,(m) are a maximum num-
ber of linearly independent Xa(m) at m, then by continuity X,(n),..., X,,(n)
are linearly independent for all n in some neighborhood U of m. It follows that
we have Xa(n) = :Ee=, FQ(n)XX(n) for each n e U, a = h + 1, ..., k. Thus if
Xaf = 0, then Xaf = 0, so we can always reduce locally to the linearly inde-
pendent number h of equations.

We call X,, ..., X a local basis of the system in the neighborhood U, and
h is called the dimension of the system. If we move to another point p outside
U, then X,, ..., X may become linearly dependent, but in some neighborhood
V of p, some other h of the X, 's will be a local basis. In the intersection U n Y
we have two or more local bases, and in general many local bases. In fact, if we
have Y. = s=, GaXs, a = 1, ..., h, where the matrix (GQ) of C°° functions
on U has nonzero determinant at each point, then the equations Yaf = 0 have
the same solutions on U as Xaf = 0, so the Y. should be considered a local
basis also. In fact, what we do to solve such systems is, in a sense, to choose a
local basis Y. in as simple a fashion as possible. We illustrate this first in the
case h = 1.

If h = I then, say, X,(m) 54 0. By Theorem 3.5.1 there are coordinates x' at
m such that X, = 81. Our equations, in terms of x' coordinates, become simply
2, f = 0. a solution is given by any function not dependent on x', that
is, a function of x2, ..., xd. In other words, f is any function which is constant
along each of the integral curves (trajectories) of X,. Of course, this latter fact
is quite evident from the original equation X, f = 0.

The step from h = 1 to h = 2 is difficult due to the following fact: If
Xaf = 0 for a = I , ..., h, then [Xa, X8]f = 0 for a, fl = 1, ..., h. This is
trivial since [Xa, Xfl]f = Xa(Xpf) - XB(Xaf) = Xa0 - X,,0 = 0. As a con-
sequence, if, say, h = 2 and [X,, X2] is linearly independent of the local basis
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X, and X2, then the system X,f = 0, X2f = 0 for which h = 2, does not have
more solutions than the system X, f = 0, X2f = 0, [X,, X2] f = 0 for which
h = 3. Thus the number of variables on which f depends is determined not
only by h but also by the relation of the X. to each other.

In the following we shall use Greek letters a, S, and y as summation indices
running from I to h.

To generalize the concept of a linear homogeneous system to manifolds we
fix our attention on the subspaces spanned by the X"(m). Thus we have
assigned to every m an h-dimensional subspace, D(m), of Mm. If Xj = 0 for
every a, then for every t e D(m), t is a linear combination of the X"(m) with
coefficients, say, co, so that tf = c"X"(m)f = (c"X"f)m = 0. Conversely, if
tf = 0 for every t e D(m) and for every m, then (Xaf)m = X"(m)f = 0 for all
a and m, since X"(m) E D(m). Hence the problem of finding a function annihi-
lated by all vectors in D(m) for every m is equivalent to the solution of the
system of partial differential equations under discussion.

A function D which assigns to each m c M an h-dimensional subspace
D(m) of M. is called an h-dimensional distributiont on M. An h-dimensional
distribution D is Cm if for every m c M there is a neighborhood U of m and
Cm vector fields X,, ..., X,, defined on U such that for every n c U, X,(n), ...,
X,,(n) is a basis of D(n). Such X,, .. , X,, are then called a local basis for D
at m. (An h-dimensional distribution is also called a differential system of h-
planes or simply a field of h-planes. If h = 1, we say we have a field of line
elements.)

A vector field X belongs to D, written X e D, if for every m in the domain of
X, X(m) e D(m) A C9 distribution D is innolutire if for all X, YE D we have
[X, Y] E D.

Proposition 3.11.1. A C m distribution D is innolutire ijf for every local basis
X,, ., X,, the brackets [X", Xa] are linear combinations of the X,, that is, there
are C" functions Faa such that [X", Xs] = Fa'aX,.

Proof. If D is involutive, then [X", X8] E D and hence [X", Xa] can be
expressed as a linear combination of the local basis X,, ., X,,. The fact that
the coefficients of these linear combinations are C- is left as an exercise.

If [X", Xa] = FaaX,, then for X, Ye D we may write X = G"X", Y = II"X",
where the G" and H" are C" functions (same exercise!). Then

[X, Y] = [G"X", H8X8]
= G"(X"H8)XR - H8(X,,G")X" + G"Haf''a8X

which clearly belongs to D.

t There is no connection with Schwartz distributions, that is, generalized functions such as
the Dirac delta function A more reasonable name would be tangent subbundle
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Remark. The equations [Xa, X,9] = FaBX usually written in coordinate
form

x,',a,XJ - X''a,XJ, = FaX'

are called the integrability conditions of the system of equations X'a,f = 0.
They are the classical hypotheses for the local complete integrability theorem
of Frobenius stated in Section 3.12.

Examples. (a) Let Z = yax - xa,,, X = za, - yaz, and Y = xa= - zax, re-
stricted to M = R3 - {O}. Then at any m e M, X, Y, and Z span a two-
dimensional subspace D(m) of Mm. We may describe D directly by the fact
that D(m) is the subspace of M. normal to the line in E3 through 0 and m.
(E3 is R3 with the usual euclidean metric.) Since [X, Y] = Z, [Y, Z] = X, and
[Z, X] = Y, the distribution is involutive.

(b) The distribution on Rd with local basis al, ..., a, is involutive since
[aQ, a#) = 0 e D. One way of stating Frobenius' theorem is that locally every
involutive distribution has this form; that is, for an involutive distribution
there exist coordinates at each point such that l3,...... , ah is a local basis of D.

An integral submanifold of D is a submanifold N of M such that for every
n e N the tangent space of N at n is contained in D(n); that is, N. c D(n).

If X e D and X(m) 0, then the range of an integral curve y of X is a one-
dimensional integral submanifold if y is defined on an open interval. Locally y
can be inverted, so that the parameter of y becomes a coordinate on the one-
dimensional manifold. The parameter can be used as a single global coordinate
provided y is 1-1. If y is not 1-1, then it is periodic and the submanifold is
diffeomorphic to a circle; the parameter may be restricted in different ways to
become a local coordinate.

In Example (a), any euclidean sphere with center 0 is an integral sub-
manifold. Other integral submanifolds consist of any open subset of such a
sphere and unions of such open subsets contained in countably many such
spheres. (The countability is required so that the submanifold will be separ-
able.)

An h-dimensional distribution is completely integrable if there is an h-
dimensional integral submanifold through each m e M. The one-dimensional
C°° distributions are completely integrable, since the local basis field will
always have integral curves. The "spherical" two-dimensional distribution of
Example (a) is completely integrable, since there is a central sphere through
each point. Not every two-dimensional C°' distribution is integrable, since,
for example, the vector fields aX and ay + xa2 on R3 span a two-dimensional
distribution but [ax, aL + ra=] = a= does not belong to the distribution. The
following proposition then tells us that this particular distribution and many
others are not completely integrable. It is the converse of Frobenius' theorem.
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Proposition 3.11.2. A completely integrable C' distribution is involutive.

Proof. Suppose D is completely integrable and that X, Y e D. Let
m e domain of [X, Y] and let N be an h-dimensional integral submanifold of
D through m. Then the inclusion map is N --- M is regular and for every
n e N (l (domain of [X, Y]) we have X(n) a D(n) = and Y(n) E
By Proposition 3.9.2 there are unique C`° vector fields, called XIN and YIN,
which are i-related to X and Y, respectively. By Proposition 3.9.1, [XIN, YEN)
is i-related to [X, Y], so in particular i,[XlN, YIN](m) = [X, Y](m) E N. =
D(m). Thus we have proved that [X, Y] E D; that is, D is involutive.

A solution function, that is, a first integral of D, is a C' function f such that
for every m e (domain off) and every t e D(m), tf = 0; that is, D(m) annihi-
latesf, or, df annihilates D(m). Of course, constants are solution functions, but
are rather useless in studying D. If f is a solution function such that dfm 94 0,
that is, m is not a critical point off, then the level hypersurfacef = c, where
c = fm, is a (d - 1)-dimensional submanifold M, in a neighborhood of m on
which df j6 0. The tangent spaces of M, are the subspaces of the tangent spaces
of M on which df = 0, and since df(D(p)) = 0 for everyp e M,, D(p) c (M1)v.
Thus D also defines an h-dimensional distribution D, on M,. If X. is a local
basis of D,, then XaIM,, defined and proved to be C' as in the proof of
Proposition 3.11.2, is a local basis of D1. Thus D, is C Finding a first integral
reduces the complexity of the problem by one dimension. If we can find
d - h functionally independent first integrals, then we have a complete local
analysis of D.

Proposition 3.11.3. Let D be a C- h-dimensional distribution. Suppose that
f1, ,fa-, are solution functions such that the df, are linearly independent at
some m e M. Then there are coordinates x' at m such that x"+' = f, i = I

.. , d - h. For any such coordinates a,, ... , o,, is a local basis for D, and the
coordinate slices f, = c', i = 1_ . , d - h, are h-dimensional integral sub-
manifolds of D. Finally, if D is restricted to such a coordinate neighborhood, it
is involutive.

(We shall omit the proof since much of what is stated just reiterates what we
have said before, and that which is new requires only routine applications of
the inverse function theorem.)

For the spherical distribution of Example (a) it is easily verified that f = r
is a first integral, where r2 = x2 + y2 + z2 and r > 0. Since d - h = 1, any
coordinate system of the form x1, x2, r gives a, and a2 as a local basis for D.
In particular, this is true for spherical polar coordinates. The level surfaces
r = c are the central spheres of R3, which are integral submanifolds, as we
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have seen. Any function of r, such as r' - 3r + 2, is also a first integral and,
conversely, every first integral is a function of r. Note that r' - 3r + 2 = 0
consists of two spheres, r = 1 and r = 2.

A maximal connected integral submanifold of D is an h-dimensional con-
nected integral submanifold which is not contained in any larger connected
integral submanifold. In Example (a) the maximal connected integral sub-
manifolds are the single whole spheres. In Example (b) they are the h-dimen-
sional coordinate planes of R° on which the last d - h cartesian coordinates
are constant. In contrast to integral manifolds in general, the maximal con-
nected one containing a given point is unique if it exists.

Theorem 3.11.1. Let D be a C m h-dimensional distribution on a manifold M.
For each m e M there is at most one maximal connected integral submanifold N
of D through in. It exists if there is any h-dimensional integral submanifold
through in, in which case N is the union of all connected h-dimensional integral
submanifolds through m. In particular, every connected h-dimensional integral
submanifold containing m is an open submanifold of N.

The proof consists in showing that N, the union of the connected h-dimen-
sional integral submanifolds containing in, is actually an integral submanifold.
The local theory, showing that N looks like an h-dimensional submanifold in
the neighborhood of any point, is essentially covered in the next theorem. The
difficult part is to show that N has a countable basis of neighborhoods, and
these topological details are too technical to be given here.

Corollary. If D is a C °° completely integral distribution on M, then for each
m e M there is a unique maximal connected integral submanifold through m.

The h-dimensional integral submanifolds of a distribution D can be para-
metrized in terms of the flows of a local basis of D. As a consequence they have
a local uniqueness not available for lower-dimensional integral submanifolds.
Moreover, the method allows us to construct solution functions by using these
flows, and hence by solving ordinary differential equations.

Theorem 3.11.2. Let X1,..., X be a local basis at m of the C' distribution D
and let {°µ,} be the flow of X,,. If there is an h-dimensional integral submanifold
N through m, then a neighborhood of m in N coincides with part of the range of
the map F defined on a neighborhood of 0 in R h by

F(s', , s") = Ity ... hµs"m.

Proof. As in Proposition 3.11.2, the restrictions XQIN are C°° vector fields
on N and their flows are the restriction Thus Fcan be entirely defined
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as a map into N. Since F, is 1-1 at 0, because F,e/ate(0) = Xa(m), Fis 1-1 on
a neighborhood of 0 and its inverse is a coordinate map on N. Therefore, the
range of F fills a neighborhood of m in N.

Remark. Another map which could be used just as well as F defined above
to generate h-dimensional integral submanifolds may be described as follows.
It uses a "radial" method instead of the "step-by-step" method of F. For each
s = (s', ..., sh), let X, = s* X,, and let {'µ,} be the flow of X,. We define
Gs = 'µ1m. The proof that G is C m is based on the C `° dependence of solutions
of systems of ordinary differential equations on parameters entering the
functions defining the system in a C°° manner. Here we have the system

dx'
du

= saXa = F'(xl,.. , xd, Sl, ... , h),

where the Xa' are the components of Xa and the F' are clearly C°° functions of
both the x` and the sa.

Finally, we can construct our original objective, a solution function of a
system of partial differential equations, by letting values off vary arbitrarily
(but C`°) in directions transverse to D, but constant on the integral manifolds.
Specifically we have

Theorem 3.11.3. Let D be a C m completely integrable distribution, X1, ... , Xh
a local basis of D at m, and {aµ,} the flow of Xa. Let x' be coordinates at m such
that X1(m), ..., Xh(m), 8h+1(m), .. , 8d(m) area basis of Mm. Let g be any C°°
function on R d -' and define f on a neighborhood of m by

J (ll',s, ... dpadm) = g(sh +1...., sd),

where {'µ,} is the flow (translation!) of a;, i > h. Then f is a solution function of D.
Every solution function of D in a neighborhood of m is given in this way by some
function g.

(The proof is left as an exercise.)

Problem 3.11.1. Let D be the spherical distribution on R3 - {0}, Xl = -Z,
X2 = - Y, where Y and Z are as in Example (a), and let m = (1, 0, 0). Show
that the parametrization F of Theorem 3.11.2 is almost the usual spherical
angle parametrization of the unit sphere.

3.12. Frobenius' Theorem
Suppose that D is a two-dimensional involutive distribution. Let X, Y be a
local basis at m of D. Let us try to choose a new local basis which has vanishing
brackets. As a first step we can choose coordinates x' such that x'm = 0,
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Y = 02i and X(m), Y(m), 83(m), ..., ad(m) is a basis of Mm. Let X, =
X - (Xx2)a2 = X'0, + X30a +. + X'ad. Then X,, 02 are a new local basis
for D and [X,, a2] = -(82X')0, - (02X3)03 - - (82X')0, is a linear com-
bination of X, and a2, say, fX, + gal. Since the components of a2 must match
in the coordinate expression for [X,, a2], we must have g = 0 and [X,, Y] _
fX1.

Now, let 0 = (X1'...' x') be the coordinate map, {µs} the flow of X,, and
define

F(s, a2, . ., ad) = IASO- '(0, a2, . ad).

Then F. is nonsingular at m, so F-' exists and is a coordinate map in a
neighborhood of m, F-' = (y', ..., y'). When y' = 0 it is clear that 0 and
F-' coincide, so at such points Yy' = ay'/axe = ax'/ax2 = Sz. When y' varies
we are moved along integral curves of X, by µ, so X, = a/ay'. If we move
along these y' curves from a point at which y' = 0, the derivative of Yy',
i - 2, is

X,Yy' = YX,y' + X,Yyi - YX,yi
= Y8 + [X,, Y]yi

=0+fX,y'
= 0,

so Yyi is constant along such curves, hence everywhere, i >_ 2. This gives
Y = (Yyt) a/ayi = (Yy') a/ayl + a/aye = (Yy')X, + a/aye, so a/aye =
Y - (Yy')X, e D and clay', alay2 is a new local basis for D. It follows [cf.
Example (b)] that D is completely integrable, having integral submanifolds in
the yi coordinate neighborhood which consist of the coordinate slices
yi=c`,i>2.

The above pattern can be extended to the case of an h-dimensional involutive
distribution. The first step is to modify a local basis so as to produce a local
basis X,,.. , X,, for which bracket multiplication is diagonal: If a < fi, then
[X., Xs] = " -'fQ0XY. (X, and Y correspond to this basis in the case h = 2
above.) Then we define a map F in terms of the flows of the X. and an
auxiliarly coordinate system, and invert F to get a new coordinate system for
which a. are a local basis of D. The result is known as the complete integrability
theorem of Frobenius and is the converse of Proposition 3.11.2.

Theorem 3.12.1. A C°° involutire distribution is completely integrable; locally
there are coordinates xi such that 8,, . , 0,, are a local basis, the coordinate
slices x' = c', i > h, are integral submanifolds, and the solution functions are
the C `° functions of x^+', 'X d

The details of the proof are omitted.

If a C" distribution D is not involutive, then its study is more difficult.
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There are two viewpoints which can be taken. First, if we assume that solution
functions are the goal, we try to include the distribution in a higher-dimensional
distribution which is involutive by throwing in the brackets of vector fields
which belong to D and the brackets of the brackets, etc., until we obtain a
system D for which further brackets will not increase the dimension. This
procedure may fail because the larger system D can be degenerate; that is, the
dimension of the subspaces D(m) of M. may vary as a function of m. If D is a
nondegenerate system, hence a distribution, then it will be involutive and the
solution functions of D will coincide with those of D. Of course, it may happen
that D(m) = Mm, in which case the only solution functions would be constant.

Second, we may desire to obtain integral submanifolds of lower dimension
than that of D, but whose dimensions are as large as possible. Of course, we
can obtain one-dimensional integral submanifolds from the integral curves of
vector fields, but generally the structure of the maximal dimensional integral
submanifolds is quite difficult to determine. The work that has been done on
this problem has used the dual formulation in terms of ]-forms (pfaffian
systems), which will be discussed briefly in Chapter 4. This work has not been
very successful except when more smoothness assumptions are imposed, that
is, the objects involved are assumed to be real-analytic (that is, expressible in
terms of convergent power series in several variables) instead of C.

Problem 3.12.1. (a) Show that the system of partial differential equations
Xf = 0, Yf = 0, where X = 9yaX - 4xa,,, Y = xax + yay + 2(z + I)a2i on
R3 - {0}, has nonconstant solutions.

(b) For a nonconstant solution f, find parametric equations of the level
surface f = c which passes through the point (3, 0, 0).

Problem 3.12.2. Show that the only solutions on R3 of (ax + 0,

(av + yaz)f = 0 are f = constant.

Problem 3.12.3. Show that the system on R', (a + xa,) f = 0, (ax + yaw)f =
0, where x, y, z, w are cartesian coordinates, has just one functionally inde-
pendent solution.

Problem 3.12.4. Show that the distribution on R' spanned by a, + xa= and
aX + ya, has no two-dimensional integral submanifolds.



Appendix to Chapter 3

3A. Tensor Bundles
It is natural to make T,M into a manifold. Since a tensor in Mm, can vary in
d'+' independent directions within Mm, and m can vary on M in d independent
directions, the dimension of T,M is d + d'+t. The manifold structure is defined

as in Section 1.2(f) by patching together coordinate neighborhoods. We realize
a coordinate neighborhood in T,M as the set of all tensors based at the points of
a coordinate neighborhood U of M. For coordinates we take the d coordinates
on U plus the d'+, components of the tensors with respect to the coordinates
on U. We shall give the details only in the case of the tangent bundle.

(i, 0)

m
Figure 13

TM

M

It is convenient (see Figure 13) to denote the points of TM by pairs (m, t),
where m e M and t e Mm; the "m" in this pair is redundant, of course, but it
avoids naming the base point oft all the time. Let x1 be coordinates on U and
let V = {(m, t) 1 m e U); that is, V = TU. We define 2d coordinates y`, y`+d on
V by the following formulas:

y{(m, t) = x'm,
y,+d(m, t) = dx'(t).

I"



93A] Tensor Bundles 159

The map µ = (y', ..., y2d) is clearly 1-1 on V.
At each m e U the components of a tangent may be specified to be an

arbitrary member of Rd. Thus the range of µ is W x R4, where W c Rd is the
range of (x', . . ., x'). The manifold structure is defined as in Section 1.2(f) by
patching together these coordinate neighborhoods V. Thus V is homeomorphic
via p to W x Rd. Subsets of TM which are not entirely within such a V, are
open iff the intersection with each such V is open.

We show that TM is a Hausdorff space. If we have two points of the form
(m, s) and (m, t), where s 0 1, we may suppose that U is a coordinate neigh-
borhood of m. Since Rd is Hausdorff, there are open sets G and H containing
(y1+ds, ..., y2ds) and (y'+dt, ..., y2dt), respectively, such that G and H do not
intersect. Then µ''(W x G) and 1A-'(W x H) are nonintersecting open sets
containing (m, s) and (m, t), respectively. If we have two points of the form
(m, s) and (n, t), where m # n, we may include m and n in nonintersecting co-
ordinate neighborhoods U and U1, respectively, and then TU and TU1 are
nonintersecting open sets containing (m, s) and (n, t), respectively.

If {Ua I a = 1, 2,3 ....} is a countable basis of neighborhoods for M, we
may assume they are coordinate neighborhoods, with coordinate maps {q7a},
and corresponding coordinate maps {µQ} on {V, = TUQ}. Let {Gd I S = 1,
2, 3,...} be a countable basis of neighborhoods for Rd, and let W. = q'QUa.
Then {µ;'(W,. x Gs) a, = 1, 2, 3, ...} is a countable basis for TM, so TM
is separable.

Finally, it is necessary to show that the coordinate systems are C m related.
Let x' be coordinates on U, z' coordinates on U1, y' and y'+d the corresponding
coordinates on V = TU, and w' and w" 'I those on V1 = TU1. The x' and z'
are related on U n U1 by Cm expressions x' = f'(z', ..., zd).

For the first d of the coordinates on T(U n U1) = V n V1 we have, for
(m, t) e V n V1,

y'(m, t) = x'm
= f (z'm, ... , zdm)
=.f(w'(m, t), ..., wd(m, t)).

Thus the first d are related in the same way as the x' and the z'. For the rest we
have

ys+d(m, t) _ dx'(t)
at

= m) dz'(t)

= f;(z'm, ..., zdm)wr+d(m, t) (sum on j)
= fi(w'(m, t)'...' wd(m, t))wf+d(m, t),

where the f'f are the partial derivatives of the f'. Thus the last d relations are
yt+d = wJ+df)(w', ..., w4),

which are clearly C
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We define the projection map a: TM -* M by 7r(m, t) = m. It is easy to show
that 7r is C Indeed, its coordinate expression in terms of the special co-
ordinates x' and y', y'+d above is (x', .. , xd) o 7r = (y1, ..., yd), which follows
directly from the definition of the y' by applying both sides to (m, t).

A vector field is a map X: E -> TM, where E c M. However, this is not an
arbitrary map but must satisfy the further condition that X(m) a Mm, which is
the same as saying 7rX(m) = m. That is, IT o X is the identity map on E. The
converse is clearly true, and in fact we have

Proposition 3.A.1. A map X : E --*TM is a vector field ijf 7r o X is the identity
on E. Moreover, X is a C m vector field iff X is C m as a map.

Proof. If 7r o X is the identity on E, then the coordinate expressions for X are

y'0X=x',
yt + d o X = Xx',

since y'X(m) = y'(m, X(m)) = x'm and yl+dX(m) _ yl+d(m, X(m)) =

X(m)x' = (Xx')m. Here we have used the redundant m or not as we please.
The first d of these coordinate expressions are always C" if the domain of X
is open. The last d are the components of X and are C`° iff X is a C°° vector
field. I

Problem 3.A.1. Generalize the projection map IT to a projection of the tensor
bundle TsM into M and prove the analogue of Proposition 3.A.1.

3B. Parallelizable Manifolds
The special coordinate neighborhoods V in TM are diffeomorphic to the
product manifolds U x Rd. Thus if M is covered by a single coordinate system,
TM is diffeomorphic to the product manifold M x Rd.

This is not the only case where TM is diffeomorphic to M x Rd. A manifold
is called parallelizable if there are C°° vector fields X1, . . ., Xd defined on all

of M such that for every m c M, {Xj(m), ..., Xd(m)) is a basis of Mm. The
vector fields X, are then called a parallelization of M. An equivalent formula-
tion of this property is given in the following proposition, which is stated
without a complete proof.

Proposition 3.13.1. M is parallelizable iff there is a diffeomorphism µ: TM -
M x R d such that the first factor of µ is 7r: TM ->- M and for each m the second

factor of µ restricted to M. is a linear function Mm -± R'.

Outline of Proof. If M is parallelizable by vector fields X1, .. , Xd, let
r1, ..., Td be the dual basis of I-forms. The map µ is then defined by

µ(m, t) = (m, <t, r'(nl)>, ..., <t, T'(m)>).
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It is clear that the first factor of µ is 7r and that the second factor is linear on
each Mm. It is left as an exercise to prove that µ and µ-' are C m.

Conversely, suppose µ: TM -> M x R° is a diffeomorphism of the type
required. Let S, = (5,,, ..., Sd,) a Rd, that is, the natural basis for Rd, and
define X,: M -* TM by X,(m) = -'(m, S,). Then it may be shown that X,, ..
Xd is a parallelization of M.

Problem 3.B.1. If X, is a parallelization of M and (f)) is a matrix of real-
valued C`° functions which has nonzero determinant at every point of M, then
Y! = f;X, is a parallelization of M. Conversely, any two parallelizations are
related by such a matrix.

If M and N are manifolds and X is a vector field on M, then we can think of
X as a vector field on M x N. In terms of product coordinates the components
of X are independent of the coordinates on N and the last e (e = dim N) com-
ponents of X vanish. Formally, if jn: M -. M x N is the injection, jm =
(m, n), then the values of X as a vector field on M x N are given by X(m, n) =
jn.X(m). Moreover, if p: M x N-+ M and q: M x N-. N are the projec-
tions, then p.X(m, n) = X(m) and q.X(m, n) = 0, and these facts also
determine X uniquely as a vector field on M x N. Similarly, a vector field
Y on N determines a vector field, also called Y, on M x N, such that
p.Y=0andq.Y= Y.

If X, is a parallelization of M and Y,, is a parallelization of N, then X,, YY
is a parallelization of M x N. Thus we have

Proposition 3.B.2. The product of parallelizable manifolds is parallelizable.

As an example which is not an open submanifold of Rd we note that the
circle is parallelizable. Indeed, we need only take X = d/dB, where 0 is any
restriction of the polar angle to an interval of length 27r. This does actually
define an X on all the circle because any two determinations of 0 are related
locally by a translation of amount 2n7r for some integer n, and hence give the
same coordinate vector field.

By Proposition 3.B.2 it now follows that the torus is parallelizable since it is
the product of two circles.

To obtain examples of manifolds which are not parallelizable we need only
have a nonorientable manifold (see Appendix 3.C). Indeed, if M has paral-
lelization X,, then those coordinate systems x` such that X; = f 8J, where
detfl > 0, form a consistently oriented atlas. Thus if M is parallelizable, then
M is orientable.

An important class of parallelizable manifolds are those which carry a Lie
group structure. On a Lie group G there is a group operation which is a C' map
G x G -} G. For each fixed g e G, multiplication on the left by g is a diffeo-
morphism L,: G -> G, L,h = gh. If we take a basis {ti, ..., td} of G,, e = the
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identity of G, then X,(g) = L9*t, defines C'° vector fields X, which form a
parallelization of G. The X, are left invariant in that Lg*X, = X, for every g e G.
The collection of left invariant vector fields form a d-dimensional vector space
spanned by the X,, the Lie algebra of G. The Lie algebra is closed under bracket;
that is, the bracket of two left invariant vector fields is again left invariant. The
properties of a Lie group are largely determined by those of its Lie algebra.
In particular, the matrix groups are Lie groups, so the orthogonal, unitary, and
symplectic groups should be studied mostly in terms of their Lie algebras.

3C. Orientability
A pair of coordinate systems x` and y' is consistently oriented if the jacobian
determinant det (8x1/ 3y') is positive wherever defined. A manifold M is
orientable if there is an atlas such that every pair of coordinate systems in the
atlas is consistently oriented. Such an atlas is said to be consistently oriented.
It determines an orientation on M and M is said to be oriented by such an
atlas. Two atlases such that every coordinate system of one is related by
negative jacobian determinant to every coordinate system of the other are said
to determine opposite orientations. If an atlas {p. = (4) 1 a e A) is consistently
oriented, then we can obtain an oppositely oriented atlas by reversing the sign
of each x.'; that is, the atlas {,p. = (-x,', x4, . . ., x4) I a e A) determines the
opposite orientation. An odd permutation of the coordinates also reverses
orientation.

An open submanifold of R° is orientable, since it has an atlas consisting of
one coordinate system, which is, of course, consistently oriented with itself.

A connected orientable manifold has just two orientations, and every co-
ordinate system with connected domain is consistent with either one or the
other. If the domain of a coordinate system is not connected, then the co-
ordinate system may be split into its restrictions to the various connected
components of its domain, and these parts may agree or disagree independently
with a given orientation of M.

An orientable manifold with k connected components has 21 orientations,
since the orientation on each component has two possibilities independent of
the choice of orientation on the other components. If just one component is
nonorientable, the whole manifold is nonorientable.

A surface in R3, that is, a two-dimensional submanifold of R3, is orientable
iff there is a continuous nonzero field of vectors normal to the surface. If the
surface is orientable, then for a consistently oriented atlas, the cross-product
of coordinate vectors can be divided by their lengths to produce a unit normal
vector field which is consistent, hence continuous, in passing from one co-
ordinate system to another. Conversely, if a continuous normal field exists,
then those coordinate systems for which the cross-product of the coordinate
vectors is a positive multiple of the normal field form a consistently oriented
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atlas. Note that the definition of cross-product requires an orientation of R3
in addition to the euclidean structure to make "normal" meaningful. However,
this euclidean structure should be regarded as a convenient tool to expedite
the proof; the result is still true if we use "nontangent" fields instead of
"normal" fields, and the concept of nontangency does not require a euclidean
structure. The result can be extended to say that a hypersurface (d-dimensional
submanifold) of a (d + 1)-dimensional orientable manifold is orientable if
there is a continuous nontangent field defined on it. Orientability of surfaces is
also described as two-sidedness.

For manifolds with a finite atlas it is possible to either construct a con-
sistently oriented atlas or demonstrate nonorientability by a recursive process.
As a first step, if the coordinate domains are not all connected, split them into
their restrictions to the connected components. Consequently, if we alter the
orientation of the coordinate system at one point we must alter it throughout.
Choosing one coordinate system we alter all those intersecting it so that they
are consistently oriented with the first one and with each other. This may be
impossible, in that the intersection of two coordinate domains might be dis-
connected, with the coordinates consistently oriented in one component and
not so in another, or two which are altered to match the first may be incon-
sistent in some part of their intersection not meeting the first one. In these
cases the manifold is nonorientable. Otherwise we obtain a second collection
of altered coordinate systems which are consistently oriented. (The first col-
lection consisted of the initial coordinate system alone.) We try to alter those
adjacent to this second collection to produce a larger consistently ordered
third collection, etc.

To illustrate this procedure consider the d-dimensional projective space Pd.

This may be realized as proportionality classes [ao : a1 : : ad] of nonzero
elements of R4+1. If ua are the standard Cartesian coordinates on Rd+1, then
the ratios ua/u° are well-defined functions on the open subset of pd for which
u" 56 0. There are d + I coordinate systems {(4) 1 a = 0, ..., d, a # i} form-
ing an atlas on Pd, defined by x,' = u'/ua. The range of each coordinate system
is all of Rd. The coordinate transformations are xQ = x,19/x;, where we let
4 = I for the case i = P. The intersection of the two coordinate domains of
(x4) and (4) has two connected components which are mapped into the two
half spaces xs > 0 and xs < 0 of Rd by the $-coordinate map. If we order the
coordinates x10 from i = 1 to i = d and order the coordinates xQ in the order
i = 1, 2, ..., a - 1, 0, a + 1, ..., d, then the jacobian matrix (8x,1,/8x10) is a
diagonal matrix with diagonal entries -1/x10 except for the j = a column,
which has diagonal entry 8x,0,/8x10 = -1/(x10)1. The determinant is thus
(-1)d/(xu)d+1. This determinant has consistently negative value if d + 1 is
even, but has opposite signs in the two components if d + I is odd. If d is odd
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we can alter the 0-coordinate system so as to make all 0-a-jacobian deter-
minants positive simultaneously. Since the 0-a-s intersection meets both com-
ponents of the a-8 intersection, positivity of the 0-a and 0-fl determinants
implies positivity of their quotient, the a-B determinant, at some points of each
component of its domain, hence everywhere. Thus Pd is orientable if d is odd
and nonorientable if d is even.

Problem 3.C.1. Prove that the following are orientable: the cartesian product
of orientable manifolds, every one-dimensional manifold, the torus, the
d-sphere, and the tangent bundle TM of any manifold M.

Problem 3.C.2. Prove that the following are nonorientable: the Cartesian
product of any nonorientable manifold and any other manifold, the Klein
bottle, and the Mobius strip.

Problem 3.C.3. Let M be a nonorientable manifold and {(µa, U,,)} an atlas for
M. For each a and P, U. n U,, = V a10 u V;8, where p, and µ° are related by
positive jacobian determinant on V' and by negative jacobian determinant
on Vae. Specify a new manifold °M by patching together coordinate domains
as follows. The atlas of °M will have twice as many members as that of M,
designated by {(µa , Ua ), (p , UQ )). The range of IA + and µa is the same as
that of µ.. For all four possible choices of signs (a, b) _ (+, +), (+, -),
(-, +), or the coordinate transformation 4 o (µI)-' equals the re-
striction of µQ o to Vab°, where ++= -, and
- - _ +. Show that

(a) These coordinate domains and transformatibns do give a well-defined
manifold °M by means of the patching-together process in Section 1.2(f).

(b) °M is orientable.
(c) If M is connected, so is °M.
(d) The mappings ,a = µa' o µ4: Ua -. U. are consistent on the inter-

sections, that is, V)°aIuanu° _ TbI as n u', and so there is a unique well-defined
map c: °M -> M such that 4pj u: = q,a.

(e) For every a, 97-'(U0) = Ua U UQ and Ta is a diffeomorphism of Ua
onto U... Moreover, Ua n UQ is empty.

Property (e) is described by saying that °M is a twofold covering of M with
covering map c. This property and the fact that °M is orientable determine °M
uniquely (up to diffeomorphism). We call °M the twofold orientable covering of
M. Results on orientable manifolds sometimes can be extended to nonorient-
able manifolds by consid%2ring the relation between °M and M.



CHAPTER 4
Integration Theory

4.1. Introduction

Of all the types of tensor fields, the skew-symmetric covariant ones, that is,
differential forms, seem to be the most frequently encountered and to have the
widest applications. Electromagnetic theory (Maxwell's equations) can be
given a neat and concise formulation in terms of them, a formulation which
does not suffer when we pass to the space-time of relativity. Differential forms
have been used by de Rham to express a deep relation between the topological
structure of a manifold and certain aspects of vector analysis on a manifold.
In the work of the famous French geometer E. Cartan, he uses differential
forms almost exclusively to formulate and develop his results on differential
systems and riemannian geometry. The generalization of Stokes' theorem and
the divergence theorem to higher dimensions and more general spaces is very
clumsy unless one employs a systematic development of the calculus of dif-
ferential forms. It is this calculus and its use in formulating integration theory
and the dual method of the study of distributions which are the topics taken
up in this chapter.

Sections 4.2 through 4.5 deal with the calculus of differential forms. This
consists of an algebraic part which has already been discussed in Section 2.18;
we modify the notation of this algebra and introduce the interior product
operator in Section 4.4; and an analytic part, in which a differential operator is
defined and its properties developed. This differential operator generalizes and
unifies the vector-analysis operators of gradient, curl, and divergence. More-
over, it replaces the bracket operation in the dual formulation of distributions.

We then turn to a description of the objects on which integration takes place.
A "set calculus" is introduced in which a new operator called the boundary
operator plays a fundamental part (see Section 4.6).

lib
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A review of the basic facts about multiple integration of functions on R°
is provided in Section 4.7.

The material of the previous sections is combined to give a theory of integra-
tion of differential forms on oriented parametrized regions of a manifold,
culminating in the generalized Stokes' theorem (see Section 4.9).

In Section 4.10 we return to the material of Sections 3.11 and 3.12, showing
how the concept of an involutive distribution has a dual formulation.

4.2. Differential Forms
A (differential) p-form is a C`° skew-symmetric covariant tensor field of
degree p [type (0, p)]. Thus a 0-form is a real-valued C W function. This
definition of a 1-form agrees with that given in Section 3.2. There are no
p-forms when p > d, where d is the dimension of the manifold.

If x' are coordinates, then the dx' are a local basis for 1-forms, in that any
1-form can be expressed locally as f, dx', where the f, are C °° functions. By
exterior products the dx' generate local bases for forms of higher orders. Thus
{dx' n dx1 I i < j} is a local basis for 2-forms; dx' A . . . A dxa is a local basis
for d-forms.

Since we are concerned in this chapter exclusively with wedge products of
forms, not with symmetric products, we can simplify our notation slightly.
Thus we shall omit the wedges between coordinate differentials, writing dx' dx1
instead of dx' A dx1. Moreover, since a local basis for p-forms consists of (;)
coordinate p-forms dx'1 dx'o where i, < . < i it is convenient to have a
summation convention which gives us sums running through the increasing
sets of indices. We indicate this alternative type of sum by placing the string of
indices to which it is to apply in parentheses in one of its occurrences in the
formula, thus: (1, i,). For example, if d = 3,

a(,1,2) dx'1 dx'2 = a1, dx' dx2 + a13 dx' dxa + a2, dx2 dxa.

This convention does not prevent us from multiplying coordinate differentials
in nonincreasing order and we have not suspended the previous summation
convention.

Finally, by the components of a p-form we mean its components with respect
to the increasing-index basis {dx"1 dxY}, not with respect to the tensor
product basis {dx'1 ® ® dx'D} as in Chapter 2. Thus we now say that the
components of a,,,,2) dx'1 dx'" above are a,,, a13, and a23, whereas in Chapter 2,

since
dx'1 dx'" = -(dx'1 ® dx'" - dx'" ® dx'1),

the components would have been said to be, say, b11 = 0, b12 = ia12, b13 =
ia13, b21 = -b,,, etc. However, it is also useful to define other scalars which
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are not all components, by using skew-symmetry for the nonincreasing indices:
all = 0, a,, = -a12, etc.

Problem 4.2.1. (a) Show that the rule for evaluating basis forms on basis
vector fields is

dx'1.. ar,) = p Sr;...SP,

where it i, and j, j, are both increasing index sets.
(b) If O,t ... ,, are the components of a p-form 0, show that 0(aj..... , a,,) _

4.3. Exterior Derivatives
The exterior derivative of a p-form 0 is a (p + 1)-form which we denote by dB.
We have already defined dO in the case p = 0 [see equation (1.8.5)]. There are
several approaches to its definition, each of which gives important information
about the operator d.

(a) In terms of coordinates d merely operates on the component functions:

dO = (dB(,, ,,,) A dx't dx'o. (4.3.1)

It is not immediately clear that this defines anything at all, since the right side
might depend on the choice of coordinates x'. However, it is easily verified that
this formula satisfies the axioms for d given below. Since the axioms are co-
ordinate free and determine d, it is a consequence that (4.3.1) is invariant under
change of coordinates.

In the case of M = R3 and cartesian coordinates x, y, z the formula bears a
strong, nonaccidental resemblance to grad, curl, and div:

df=f.dx+f,dy+ffdz,
d(fdx+gdy+hdz)=dfAdx+dgAdy+dhAdz

_ (fXdx +f,dy +f,dz) A dx
+(gxdx+g,dy+gzdz) n dy
+ (h. dx + h, dy + h. dz) A dz

_ (h, - g2) dy dz + (fs - hX) dz dx
+ (gX - f,) dx dy,

d(f dy dz + g dz dx + h dx dy) = df n dy dz + dg n dz dx
+ dh A dx dy

=UX+g,+h.)dxdydz.
(We have indicated partial derivatives by subscripts.) The discrepancies from
the usual formulas for grad, curl, and div can be erased by introducing the
euclidean inner product on R3, for which dx, dy, dz is an orthonormal basis at
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each point. This gives us an isomorphism between contravariant and covariant
vectors, ai + bj + ek = a8z + be + caz.--> a dx + b dy + c dz; we shall
ignore this isomorphism and deal with only the covariant vectors. If we also
impose the orientation given by dx dy dz, then we get the Hodge star operator
(2.22): *dx = dy dz, *dy = dz dx, *dz = dx dy, *(dx dy dz) = 1, and for the
other cases we can use ** = the identity. Then we have

*d(f dx + g dy + h dz) = (h - g=) dx + (f= - h.) dy + (gx dz,

These formulas show that a more precise version of the resemblance between
curl and div and d on 1-forms and 2-forms, respectively, is that the covariant
forms of curl and div are the operators curl = *d and div = *d*, both operat-
ing on 1-forms. The covariant form of grad is grad = d, the exterior derivative
on 0-forms.

(b) There are a few important properties of d which are also sufficient to
determine d completely, that is, axioms for d:

(1) If f is a 0-form, then df coincides with the previous definition; that is,
df(X) = Xf for every vector field X.

(2) There is a wedge-product rule which d satisfies; as a memory device, we
think of d as having degree 1, so a factor of (-1)" is produced when d com-
mutes with a p-form: If 0 is a p-form and T a q-form, then

d(OAr)=dOAT+(-1)DOAdr;
that is, d is a derivation.

(3) When d is applied twice the result is 0, written d2 = 0: d(dO) = 0 for
every p-form 0. [As an axiom for the determination of d it would suffice to
assume d(df) = 0 only for 0-forms f, but the more general result (3) is a
theorem which we need.]

(4) The operator d is linear. Only the additivity need be assumed, because
commutation with constant scalar multiplication is a consequence of (1) and
(2): If 0 and T are p-forms, then d(0 + r) = dO + dr.

The coordinate definition (4.3.1) is an easy consequence of these axioms,
because by (2) and (3),

d (dx'1... dx'n) _ (d 2x' ')A dx'2 ... dx'D - dx" A (d2x'2) A dx'3 ... dx'v
+...+ (-1)D-'dx'1...dx'=-I A d2x'n = 0.

Thus we have

d(f dx'1 . . .dx'D) = df A dx'1...dx', + fd(dx'1...dx',)
= df A dx' 1.. dx'n,

which, with additivity (4), gives (4.3.1).
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The converse, that formula (4.3.1) satisfies the axioms, is a little harder. Of
course, (1) and (4) are trivial. To prove (2) we need the product rule for
functions: d(fg) _ (df)g + f dg. The components of BAT are sums of products
of the components of 0 and T. Applying the product rule for functions gives
two indexed sums, which we want to factor to get (2), and this is done by
shifting the components of T and their differentials over the coordinate dif-
ferentials corresponding to B, which in the second case requires a sign (-1)':

d(B A T)=
1

--

d(01 ,Ti3 .. lo) A dx`l...dx'p dx'l...dxr,
p!q!

1

[d0,1 ,A dx'l...dx'yTft . ,a dxf1...dx',
p!q!

+ Bit n(-1)" dx11. . .dx'n A dr,1 ,a A dxfl . .dx'Q].

(The factor 1 /p!q! is inserted because we are unable to keep ii ... i, jt j, in
increasing order when we are only given it . . . i, and jl ... j, in increasing order,
so we have switched to the full sum and consequent duplication of terms,
p! for B and q! for T.)

Axiom (3) is known as the Poincare lemma, although there is some confusion
historically, so that in some places the converse, "if dB = 0, then there is some
T such that 0 = dr," is referred to as the Poincare lemma. The converse is true
only locally (Section 4.5). The proof that (4.3.1) satisfies (3), d2 = 0, uses the
equality of mixed derivatives of functions in either order, a symmetry property,
which combines with the skew-symmetry of wedge products to give 0.

(c) There is an intrinsic formula for d in terms of values of forms on
arbitrary vector fields. This formula involves bracket and shows that the ability
to form an intrinsic derivative of p-forms is related to the ability to form an
intrinsic bracket of two vector fields. We only give the formula in the low-
degree cases for which it has the greatest use.

f a 0-form: df(X) = Xf.
B a 1-form: dO(X, Y) _ I{XB(Y) - YO(X) - B[X, Y]}

=#(X<Y,0>_ Y<X,B>-<[X,Y],B>).
B a 2-form: dO(X, Y, Z) _ {XB(Y, Z) + YO(Z, X) + ZB(X, Y)

- 0([X, Y], Z) - B([ Y, Z], X)
- B([Z, X11 Y)}.

[The annoying factors }, can be eliminated by using another definition
of wedge products. This alternative definition, which does not alter the essential
properties of wedge product, is obtained by magnifying our present wedge
product of a p-form and a q-form by the factor (p + q)!/p!q!. Both products
are in common use and we shall continue with our original definition.)
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Problem 4.3.1. Show that axiom (2) unifies the following formulas of vector
analysis :

(a) grad (fg) = g grad f + f grad g.
(b) curl (fo) = grad f x 0 + f curl 0.
(c) div (fl) = grad f 0 + f div 0.
(d) div (o x r) = curl 6. curl T.

Hint: Use the following expressions for cross and dot product in terms of
A and *:

o x T = *(0 A 7).

Problem 4.3.2. Show that axiom (3) gives:

(a) curl grad f = 0.
(b) div curl f = 0.

Problem 4.3.3. (a) Show that the laplacian operator on functions is

div grad = *d *d.
(b) The cylindrical coordinate vectors 8 13 i 8z are orthogonal and have

lengths 1, r, l . Hence dr, r do, dz is an orthonormal coherently-oriented
covariant basis, so the cylindrical coordinate formulas for * are

*dr = r d O dz, *d O = I dz dr, *dz = r dr d O, *(dr d O dz) = r

Use these to obtain the cylindrical coordinate formula for the laplacian *d*d.
(c) Find the spherical coordinate formula for *d*d by the same method.

Problem 4.3.4. (a) Compute the operator d*d* - *d*d on a 1-form, in terms
of cartesian coordinates on R3.

(b) From part (a) derive the formula for the laplacian of a vector field on
R3: V20 = grad div 0 - curl curl 0.

(c) Show that d*d* - *d*d is ± the laplacian on forms of all orders on R3.
(Note that d is 0 on 3-forms.)

4.4. Interior Products
The interior product by X is an operator i(X) on p-forms for every vector field
X. It maps a p-form into a (p - 1)-form; essentially this is done by fixing the
first variable of the p-form 0 at X, leaving the remaining p - I variables free
to be the variables of i(X)O (except for a normalizing factor p). In formulas,
for vector fields X1, ... , X,_ 1,

[i(X)o](X1, ..., X,-1) = pO(X, X1, ..., X,_1).
For 0-forms we define i(X)f = 0.
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Example. We compute i(8,) on the basis p-forms dx'1 . .dx'D, where

i, 0 1 we have for j, < < jn-,,

,)(8J1, ..., 8,,-,) = p dx11 ...dx',(a1,

= 0 (see Problem 4.2.1).

Thus i(8,)(dx'1 . dx'n) = 0 since its components are all 0.
(b) If i, = I we have that p dxl dx2 . . dx'o (8,, 8i1, ..., 8,y_,) is 0 if

(i2, ..., (jl,...,jn-1) and it is p/p! = 1/(p - 1)! if (i2, ..., i,) =
(j1,.. . Since these are the same values which dx'2 . . dx'o has on
(ail,..., Of,) it follows that

i(al)(dxl dx'2...d,) = dx'2...dx',.

The action of i(8,) on all other forms now can be obtained by using the
linearity of i(8,), the latter being obvious from the definition.

Proposition 4.4.1. The operator i(X) is a derivation of forms, that is, for a
p-form 0 and a q-form r it satisfies the product rule:

i(X)(0 A T) = i(X)O A T + (- 1)v0 n 1(X)T.

[As with d, if we think of i(X) as having degree -1, then in passing over the
p-form 0 we get a factor of (-1)'.]

Proof. The operator i(X) is purely algebraic, so that the value of i(X)O at a
point depends only on the values of X and 0 at that point. In particular, if X
is 0 at a point, then both sides of the product rule formula are 0 at that point.
Hence we only need consider further the case where X 0, so we might as
well choose coordinates such that X = 8,.

If we write 0 and T in terms of their coordinate expressions and expand both
sides of the product formula using the distributive law for wedge products and
the linearity of i(8,), it becomes clear that we only need prove the formula for
the cases where 0 and r are coordinate forms dx'1 dx'D and dxil .. dxl,,
respectively. For this there are four subcases depending on whether i, and j,
equal 1 or not. These subcases can be dealt with using the above Example and
the details are left as an exercise.

Multiplication of these interior product operators is skew-symmetric, that is,
i(X)i(Y) = -i(Y)i(X):

i(X)i(Y)0(...) = pi(Y)0(X...
p(p - 1)0(Y, X... )

_ -p(p - 1)0(X, Y, ...)
_ -i(Y)i(X)0(...).
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It follows that the operation i(X)i(Y) depends only on X A Y, so we define
i(X A Y) = i(X)i(Y). Then we extend linearly to obtain i(A) for every skew-
symmetric contravariant tensor A of degree 2. The operator i(A) maps p-
forms into (p - 2)-forms. Similarly we can define i(B), for any skew-symmetric
contravariant tensor B of degree r, mapping p-forms into (p - r}-forms.

Since i(X) is a derivation it is determined by its action on 0-forms and
1-forms. One need only express an arbitrary p-form in terms of 0-forms and
1-forms and apply the product rule repeatedly.

Since Lie derivatives are brackets in one case, and the exterior derivative
operator d is given in terms of brackets and evaluations of forms on vector
fields by (c) in Section 4.3, it is not too surprising that there is a relation
between the operators Lx, i(X), and d, operating on forms.

Theorem 4.4.1. On differential forms, Lie derivatives are given by the operator
equation

Lx = i(X)d + di(X).

(We also remember this as L = id + di.)

Proof. We have seen that Lx is a derivation of degree 0 of skew-symmetric
tensors; that is, it preserves degree and satisfies the product rule (see Section
3.6). We shall show that i(X)d + di(X) also is a derivation:

[i(X) d + di(X)](6 A T) = i(X)(dO A T + (-1)"0 A dT)
+ d(i(X)B A T + (-1)°B A i(X)T)

= i(X) dO A T + (-1)p+1 dB A i(X)7'
+ (-1)1(X)9 A dT + (-1)216 A i(X) dT
+ di(X)6 A T + (-1)'-'i(X)6 A dT
+ (-1)" dO A i(X)7- + (-1)2'O A di(X)T

= (i(X)d + di(X))OAr + 0 A (i(X) d + di(X))T.

Thus if Lx and i(X)d + di(X) agree on 0-forms and I-forms, then they
agree on all p-forms.

On 0-forms we haveLxf = Xf, whereas i(X) df + di(X)f = i(X) df + d0 =
df(X) = Xf.

On a 1-form df we have Lx df = d(Xf), since Lx<Y, df> = X< Y, df>=
X(Yf).

On the other hand,

Lx< Y, df> _ <Lx Y, df> + < Y, Lx df>
_ <[X, Y], df> + <Y, Lx df>
=XYf-YXf+<Y,Lxdf>,
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so <Y, Lx df) = YXf = <Y, d(Xf)). But

[i(X)d + di(X)] df = i(X) d2f + di(X) df
= 0 + d(Xf).

We do not need to check values on the more general 1-forms g df because of
the product rule being satisfied by each operator.

Corollary. The operators d and Lx commute on forms; that is, for every p -form
0, dLxO = Lx do.

Proof. The formula for Lx and the fact that d2 = 0 give di(X) dO for both
sides. I

When written in the form

(p + 1) dO(X,...) _ [Lx0 - d(i(X)O)](...),

the relation gives a means of determining d on p-forms from Lie derivatives
and d on (p - l)-forms. This suggests that when we wish to develop some
property of d and we have some corresponding property of Lie derivatives,
we should try an induction on the degree of the forms involved.

Problem 4.4.1. (a) Using the fact that Lx commutes with contractions show
that

(1) If 0 is a 1-form: (LX0)(Y) = X0(Y) - 0[X, Y],
(2) If o is a 2-form: (LxO)(Y, Z) = XO(Y, Z) - 0([X, Y], Z) - O(Y, [X, Z]).
(b) Use (p + 1) dO(X, ...) = LxO(...) - d(i(X)O)(...) to prove the sec-

ond and third formulas of Section 4.3(c).

4.5. Converse of the Poincare Lemma
Consider the following commonly accepted results from vector analysis in E3.

(a) If grad f = 0, then f is constant.
(b) If curl X = 0, then there is a function f such that X = grad f.
(c) If div X = 0, then there is a vector field Y such that curl Y = X.
(d) For every function f there is a vector field X such that div X = f.

Each of these statements is defective, although (d) only requires a modest
differentiability assumption. Such differentiability assumptions cannot repair
(a), (b), and (c), however, since their major defect lies in the failure to specify
certain topological assumptions on the domains of definition off and X. We
give counterexamples to (a), (b), and (c) below. In (a) it must be assumed that
the domain off is connected; in (b) that the domain of X is simply connected,
that is, every simple closed curve in the domain of X is the boundary curve of
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a surface of finite extent in the domain of X; in (c) that every compact surface
in the domain of X must be the boundary of a bounded region in the domain
of X.

The purpose of this section is to unify and generalize the corrected versions
of (a), (b), (c), and (d). This is achieved by translating the results to statements
about p-forms. The conditions on the domains are replaced by a single stronger
condition which implies all the special cases: We assume that the domain is a
coordinate cube for some coordinate system x1.

Before proceeding with the general theorem let us give some examples which
show the necessity of some restrictive hypothesis on the domains. These
examples will parallel (a), (b), and (c) above, but will be given in terms of
forms.

Examples. (a) If we define f on R3 - {(O, b, c) I b, c e R} by

.f(x, y, z) =
1 ifx> 0,

if x < 0,

then f is C°° and df = 0, but f is not constant. This is possible because the
domain off is not connected.

(b) On R3 - {(O, 0, c) I c e R) we define a 1-form

-ydx+xdy
x 2 + y2

We have dr = 0, but locally r = dB, where B is any single-valued determination
of the cylindrical angle variable. Since this angle cannot be defined con-
tinuously throughout the domain of r, it is impossible to find a function f such

that df = T. (A more convincing argument is that f df = fpl - fpo, where
po and pl are the initial and final points of the curve y, so if y is closed, then
frdf = 0. However, if y is the counterclockwise oriented unit circle in the

xy plane, then fr r = 210 The domain of r is not simply connected since a
curve around the z axis cannot be filled with a surface in the domain of T.

(c) Let r = (x2 + y2 + z2)"2 and define the 2-form r on R3 - {0} by

r = 3 (x dy dz + y dz dx + z dx dy).

Then it is easily checked that dr = 0. However, there is no 1-form a defined on

R3 - {0} such that da = r, for by Stokes' theorem we have fs2 da = 0, for
every I-form a, where S2 is the central positively-oriented unit sphere (r = 1).
However, the restriction of r to S2 is the area element of S2, so we have
£2 r = 4,r = area of S2. Note that S2 is a compact surface which is not the
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boundary of a bounded region in the domain of T. However, the domain of T
is simply connected.

[Our definition and notation for line and surface integrals in terms of forms,
as well as Stokes' theorem, will be given later, in Sections 4.8 and 4.9. The
translation to the usual vector formulation is in (b):

f, T = jr (x2 + y2) - 1 . (- yi + xj) - dr

and in (c):

Js2T=ffS

A p-form T is closed if dT = 0; we say, for p > 0, that T is exact if there is a
(p - 1)-form 0 such that dO = r; a 0-form is exact if it is constant. If for every
m in the domain of r there is a neighborhood U of m such that r1,,, the
restriction of T to U, is exact, then we say that r is locally exact. It is obvious
that exactness implies local exactness. Axiom (3) for d, the Poincare lemma,
shows that local exactness implies closedness. Indeed, if rl, = dO,, then
dTI = d(TIu) = d2B = 0, and since this holds for some U about every
point, dT = 0. Our aim is to prove a local converse of the Poincare lemma:

Theorem 4.5.1. If T is a closed p-form, p = 1, .. , d, then for every cubical co-
ordinate neighborhood U = {m I a' < x'm < b`} contained in the domain of T,
there is a (p - 1) form 0 defined on U such that dO = TI o. A closed 0-form
defined on U is constant on U. In particular, every closed p-form is locally exact.

Proof. For a 0-form T, dT = 0 means that in U, e,T = 0, i = 1, . , d. It then
follows that r is constant along any Cx curve in U, and since U is connected,
T is constant in U.

Without loss of generality we may assume that the origin 0 e Rd corresponds
to some point in U under (x1, .. , xd); that is, a' < 0 < b', i = 1 , ..., d.

To complete the proof we will construct what is known as an algebraic
homotopy H of d on forms defined on U. This means that H is a linear trans-
formation of p-forms into (p - 1)-forms, p = 0, 1, ..., d, such that for every
p-form r we have

HdT+dHr=T;
that is, Hd + dH is the identity map on forms. Once we have such a homotopy
H it is trivial to solve the problem of finding 0, since dr = 0 gives dHr = T;
thus we let 0 = Hr.

We define H on terms of the type a = f(x1, ... , xd)dx'1 . . dx'D, where
i,<...<ip,by

p1

Ha = [ J .f(0, ..., 0, tx`I, xi1 } 1, ..., x°) dt]xti dxT2 ... dx+p,
0
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If a is a 0-form we let Ha = 0. Then H is extended to all forms by linearity.
It requires a rather lengthy computation to verify that Hda + dHa = a.

Taking the exterior derivatives involves partial differentiation of an integral
with respect to parameters in the integrand. A standard theorem of advanced
calculus justifies taking the partial derivative operators inside the integral
signs. Other than this one needs to observed that

x' a,f(0, . . ., 0, tx4, x4+1, . . ., xd) = dt f(o, ..., 0, tx4, x1+1, ..., xd)

and that

tx' a, f(0, ... , 0, tx', xt +1,..., xd) + f(o,... , 0, txt, xf + 1, ... , xd

= dt [tf(o, ..., 0, tx', x'+1, - ., xd)]

(i not summed in either case).
The details are left as an exercise.

Examples. We show how H performs to give the results (b), (c), (d) above.
(b) Suppose r = f dx + g dy + h dz, d-r = 0, and r is defined on a cubical

region of R3. From dr = 0 we have f, = gx, f = h, and g2 = h, where the
subscripts indicate partial derivatives. Then 0 = Hr is the 0-form given by

1 1 1

8(x, y, z) =
X
f. f(tx, y, z) dt + y fo

J
g(0, ty, z) dt + z ro h(0, 0, tz) A

J

From this we get

dO = (fof [f(tx, y, z) + xtfx(tx, y, z)] dt) dx

+ (f 1 [xf1,(tx, y, z) + g(0, ty, z) + ytgy(0, ty, z)] dt) dy

+ (f 1 [xf2(tx, y, z) + ygz(0, ty, z) + h(0, 0, tz) + zth=(0, 0, tz)] dt) dz

_ fp d [tf(tx, y, z)] dt) dx + (f of [xgx(tx, y, z) + dt (tg(0, ty, z))] dt) dy

+ (fo [xhx(tx, y, z) + ty, z) + dt (th(0, 0, tz))] dt) dz

= (f(x, y, z) - 0) dx + ([g(x, y, z) - g(0, y, z)1 + [g(0, y, z) - o]) dy
+ ([h(x, y, z) - h(0, y, z)] + [h(0, y, z) - h(0, 0, z)] + [h(0, 0, z) - 0]) dz

= f dx + g dy + h dz.
(c) If r=fdxdy+gdxdz+hdydz,then dr=0givesf

For 0 = Hr we have

0 = (f 1 f(tx, y, z) dt)x dy + (f 1 g(tx, y, z) dt)x dz + (f 1 h(0, ty, z) dt)y dz.
0 0 0
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The verification that dO = r requires the same technique, so it is omitted.
(d) Ifr=fdxdydzand

0 = (Ju1 f(tx, y, z) dt)x dy dz,

then it is obvious that dO = r.
Remarks. (a) There is no reason why a', b' cannot be -oo, +oo. In particular

the coordinate range may be all of Rd.
(b) It should be clear that the solution for 9 is not unique, except when r

is a 1-form. In fact, if a is an arbitrary (p - 2)-form, then d(9 + da) =
dO + d2a = T. Moreover, there is nothing special about the operator H; it
even depends on the order in which the coordinates are numbered. A more
general construction of such homotopies is given in H. Flanders, Differential
Forms, Academic Press, New York, 1963.

(c) We have already indicated that the sort of domain on which a closed
p-form is always exact depends on p. If p = 0, then the domain must be con-
nected; if p = 1, simply connected; if p = 2. spherical surfaces must be deform-
able to a point; etc. More generally, de Rham has proved a theorem which
equates the number of " independent" closed, nonexact p-forms defined globally
on a manifold with the pth Betti number B, of the manifold. The Betti numbers
are the same topological invariants encountered in Morse theory (cf. Section
3.10). By this we mean that there are closed p-forms 71, ..., rg, (B = B,) such
that:

(1) A linear combination with constant a,'s is exact only if all the a, = 0.
(2) For any closed p-form r there are constants a, such that r - >a,ri is exact.
For example, the first Betti number of R2 - {0} is B1 = 1, and the closed

1-form (x dy - y dx)lr2 = rl is the only independent one. In fact, if r is any
other closed 1-form on R2 - {0} and c = (21T)-1 f81 r, then r - cr1 is exact,
where S' is the central counterclockwise-oriented unit circle. Indeed, by the
choice of c, fsl r - cr1 = 0, and hence by Green's theorem in R2, fr r - c71 = 0
for every closed curve y. Thus the line integral f r - cr1 is independent of path,
so an indefinite integral makes sense and is a 0-form f such that df = 'r - C71.

We may use de Rham's theorem in either direction. If we know something
about the Betti numbers of a manifold (for example, by applying Morse theory),
we may assert the existence of so many closed forms. Conversely, if we can
display some independent closed forms we know that the Betti numbers are at
least that great.

Example. Let M = the torus. The angle variables B and q, giving the amount of
rotation in either direction around the torus are defined only up to multiples of
21r, but for any choice the differentials r1 = de and r2 = dip are the same, and
hence globally defined, even though B and c cannot be. Since r1 and r2 are locally
exact they are closed. The integrals of r1 and r2 along curves measure the
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amount of smooth change of B and p along the curve. The integral of any exact
form around a closed curve is 0, so if a1T1 + a27-2 were exact, then

fl, a1T1 + a272 = 2ira1 = 0,
JY2 a1T1 + a2T2 = 21ra2 = 0,

where y.1 and y2 are the sides, identified in pairs, of a square used to represent M
(see Figure 14). Thus 7-1 and 7-2 are independent and the Betti number B1 of M

71
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Figure 14

is at least 2. By using the right Morse function (one with only two saddle points)
we can prove that B1 5 2, which determines B1 and shows that there are no more
independent closed I-forms.

Problem 4.5.1. Find a vector field X such that curl X = yi +zj + A.

Problem 4.5.2. What are the partial differential equations in terms of co-
ordinates for which Theorem 4.5.1 asserts there are local solutions in the case
p = 2? What are the integrability conditions?

Problem 4.5.3. Generalize Examples (b) and (c) to higher dimensions by
finding a radially symmetric (d - 1)-form on Rd - {0} which is closed but not
exact.

4.6. Cubical Chains
The objects over which we integrate p-forms are somewhat more general than
p-dimensional oriented submanifolds: We integrate over oriented C°° p-cubes
and formal sums of them (chains). Of course, the domain of integration in a
problem arising in applications is not usually given as a chain, so that in
applying this integration theory one must develop the skill of realizing com-
monly encountered domains as chains, that is, parametrizing the domains. In
mathematical applications one rarely parametrizes domains specifically but
rather uses the fact that a broad class of domains are parametrizable.
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A rectilinear p-cube (p > 0) in R' is a closed cubical neighborhood with
respect to cartesian coordinates:

U={(u1,...,u")I b' <u' <b'+c',i= 1,...,p),

where the b1 and c' are given constants with c' > 0, i = 1, ..., p. We do not
allow infinite values for the bounds on the u', so U is closed and bounded,
hence compact.

A C' p-cube a in a manifold M is a C' map a: U--). M, where U is a
rectilinear p-cube. (The meaning of C m on a closed set is that there is some
C°° extension to an open set U+ containing U.)

An oriented p-cube is a pair (a, w), where a is a p-cube and w is an orienta-
tion of R'. According to the definition in Appendix 3.C, to is then an atlas of
charts on R' related to each other by positive jacobian determinants. However,
for our purposes it is better to express the orientation in terms of p-forms. If
coordinates x', . . ., x' and y', . . ., y' are related by jacobian determinant
J = det (ax'/8y'), then dx1 dx' = J dy' dy" (cf. Theorem 2.19.2). Thus
we can tell whether coordinate systems are consistently oriented by comparing
their "coordinate volume elements" dxl dx' and dy' . . . dy'. Since one of
the two global cartesian systems u',.. . , u' or -u', u2, .. , u' must be con-
sistently oriented with w, we choose to identify w with one of the volume
elements du' du' or d(-u') due du' = -du' .. du'.

If -w is the orientation opposite to w, then we say that (a, -w) is the
negative of (a, w).

We complete our definitions to include the case p = 0 by defining a 0-cube
in M to be a point m e M, and an oriented 0-cube to be a point paired with
+ I or -1, that is, (m, + 1) or (m, -1); these are negatives of one another.

If U, as above, is the domain of a p-cube a, we define the (p - 1) faces of a
to be the (p - 1)-cubes a,,, i = 1, ..., p, e = 0, 1, defined by

(vl v' -') = a(v' v' ' b1 + ec' v' v' -')

where V:5 v :!- b' + c' for j = I, ..., i - 1 and bJ+1 < v5 :5,Y+1 + c1+'
for j = i, ..., p - 1. Thus a has 2p such (p - 1)-faces. The k -faces of a,
k = 0, . . ., p - 2, are defined recursively to be the k-faces of the (k + 1)-faces
of a. They are written a41t02C2 thth to avoid the more cumbersome notation
(.. (a,lC1),2C2...where h = p - k. In particular, the vertices or 0-faces
of a are the points a(b' + tic', .. , b' + -,,c'), so there are 2' vertices.

To define the (p - 1) faces of an oriented p-cube (a, w) we provide a,, with
an orientation w,,. Since we want = -(co,,) we take this as part of the
definition and restrict our attention to w = du' du'. Then we let

w,, = (2e - I)(- I)` dv'... dv'- 1.



180 INTEGRATION THEORY [Ch.4

On the face of U on which u' = b' + ec', the coordinate vector of the co-
ordinate (2e - l)u' is directed outward from the interior of U. If we follow
(2e - 1)u' by (2e - 1)(- l)'' lvl, v2, . . ., vp-1, we obtain a system consistent
with w, since the sign (- 1)1-1 compensates for the shift in position of u'. Thus
we have chosen the orientation on the boundary faces of U in accordance
with the "outward pointing normal" convention (see Figure 15).
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The 0 faces of an oriented I-cube (a, dul) are defined to be (a(bl), -1) and
(a(b1 + c1), +1).

It is interesting and important that it is not possible to consistently define
oriented (p - 2)-faces of an oriented p-cube. In fact, we have

Proposition 4.6.1. Let a be a p-cube (p > 1), w an orientation of a, and
1 < i < j < p. Then the (p - 2)-cubes ajb(j _ 1)e and aje,b are the same (p - 2)-

face of a, and the orientations given it by w through a,1 and aJe are negatives,
that is, wjb(j-1)e wjele.

Proof. It is evident that ajb(j_ 1)a and a,ei6 are both obtained from a by
restricting ul and uj to be b' + Sc' and bj + ecj, respectively. The signs attached
to the first of the remaining coordinates, which determine the orientations
wlb Ci_i)e and wjejb in the case w = du'. du", are (28 - ])(-1)'-1(2e - 1)(-1)j
and (2e - I)(-1)j-1(2S - I)(-I)' 1. These are clearly negatives of each
other.

We define p-cubes a and g to be equivalent if there is a diffeomorphism 9)
between open sets containing their domains which maps the (geometric)
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k-faces of U (= domain of a) onto the k-faces of V (= domain of fi), k =
0, ... , p, and such that the diagram

commutes; that is, g o Sn = a. It should be clear that equivalence of p-cubes is
an equivalence relation. It is also obvious that equivalent p-cubes have the
same range. Simple examples of equivalence are obtained by taking c = trans-
lations, multiplication of coordinates by nonzero constants, permutations of
coordinates, or a combination of these, and letting a = o ip for some
given S.

If a is equivalent to g via q' and w is an orientation of a, then since p is a
coordinate map on R' it is consistently oriented either with (ul,..., u') or
with (-u', u2, ..., u'). Depending on which is the case we define (a, w) to be
equivalent to (8, w) or (fl, -w). Again this is an equivalence relation on
oriented p-cubes.

Proposition 4.6.2. If (a, w) is equivalent to (,6, Sw), S = ± 1, then the oriented
(p - 1) faces of (a, w) are equivalent in some order to those of (f, Sw).

(This follows immediately from the definitions.)

A p-chain is a finite formal sum r,C, of oriented p-cubes C, with real
numbers r, as coefficients. A p-chain r,C, is equivalent to a p-chain s1D,

if for every oriented p-cube (a, w) we have

-
{r,

{r,

Ci is equivalent to (a, w)}

C, is equivalent to (a, -w)}

_ {sf I D, is equivalent to (a, w)}

- {s, I Df is equivalent to (a, -co)).

We say that a p-chain t,E1 is irreducible if for every i and j (i 96 j), E, is
not equivalent to the negative of E;, E;, or the negative of E. It follows that
every p-chain is equivalent to an irreducible one. For each p, we allow the
empty sum, called the null p-chain, or simply, the null chain 0, as a possibility.
Chains can be added to each other and multiplied by real numbers in an
obvious way, and these operations are compatible with the equivalence
relation.

For a 0-chain we combine the orienting signs with the coefficients and simply
write it as a sum of numbers times points: rim,.
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For each p we see that the set of p-chains is a vector space over the reals.

Define x to be a regular point of a if x e U°, the interior of the cubical range
U of a, and if a, is nonsingular at x. Denote by U' the set of regular points of a.

The geometric meaning of p-chains comes from the possibility of represent-
ing by them a region in a p-dimensional oriented submanifold N. We do this
only for irreducible p-chains with coefficients t, = 1. We say that an oriented
p-cube (a, w) parametrizes a region Sin N if a is 1-1 on U', S is the range of a
(S = aU), and whenever a, is nonsingular at x and vl,..., v, is a basis of Rx
which is consistent with the orientation w, then the basis a,vl, ..., a,v, of N.,
is consistent with the orientation of N. [A basis of tangent vectors v, at x is
consistent with w if there is a coordinate system consistently oriented with w
such that 8,(x) = v,.] If a p-cube parametrizes a region, so also does any
equivalent p-cube.

An irreducible p-chain (a,, w,) parametrizes a region S of N if

(a) Each (a,, w,) parametrizes a region Si of N.
(b) S is the union of the Si.
(c) For every i # j, a; U, and a, U1 are disjoint, where U, is the domain of a,.

Note that we have not required the p-cubes to match along the faces in any
regular way, although such a matching is reasonable for parametrization of a
manifold with boundary, defined below (cf. Theorem 4.6.2).

A reducible p-chain parametrizes S if an equivalent irreducible p-chain
parametrizes S. Any other equivalent irreducible p-chain will also parametrize
S.

Examples. (a) A constant map a: U-> M is a p-cube. Since a(u',..., up) _
a(-u',, up), p > 0, (a, co) is equivalent to its negative (a, -w).

(b) Triangles, tetrahedra, and their higher dimensional analogues, p-sim-
plexes, can be parametrized by a p-cube. For example, the p-simplex with
vertices (0, .. , 0) and the unit points ( 1 , 0, . . ., 0), (0, 1, 0, . ., 0), ...,
(0, .. , 0, 1) is the range of the p-cube in RP defined on U: 0 < u' S 1, by

a(u',..., up) = (ul, u2[1 - u'], u3[1 - ul][I - u2], ...,
Up[l - u'][1 - u2]... [I - up-l])

All interior points of the domain of a are regular. The same formula defines
an extension of a to an open set (all of Rp, in fact) containing U, so a is C C.

This example, and the fact that a p-cube can be decomposed into p-simplexes,
shows that nothing essential can be gained or lost by basing a theory on sim-
plexes rather than on cubes.

(c) The polar coordinate map a(r, 0) _ (r cos 0, r sin 0) parametrizes the
closed unit disk by a 2-cube defined on the rectangle 0 < r < 1, 0 <_ 0 < 27r
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(see Figure 16). The regular points are the interior points. The four faces are
given by

a10O = (0 cos 0, 0 sin 0) = (0, 0), so a,, is a constant 1-cube,
a110 = (cos 0, sin 0), so all parametrizes a circle,
a20r = a21r = (r, 0), so a20 and a21 are equivalent and parametrize a unit

segment of the x-axis. Note, however, that for either orientation w of a, the
oriented faces (a20, w20) and (a21, w21) are negatives of one another.

e all

Figure 16

(d) We generalize (c) by defining a p-cube which parametrizes the unit
p-ball, which has as its topological boundary in RD the unit sphere S'-':

a(r, 01, ..., 0p_1) = (r cos 01, r sin 0, cos 02, r sin 0, sin B2 cos 03, . .,
r sin 0, sin 02 sin 0p_2 cos OP_1, r sin 0, - -sin 0,_1),

where 05r<_ 1,050;<rrfor 1 1,...,p-2,and0<_ O,_, 2,r. The
face a,,, on which r = 1, is a parametrization of the (p - 1)-dimensional
submanifold SP-1 of R. The face a10 is constant. For 2 < i 5 p - 1 the
faces a,E are constant as functions of O,, ..., and so when given an
orientation they are equivalent to their negatives. Finally, a,, and aD1i on
which 0,_, equals 0 and 27r, respectively, are equal, but for either orientation
w of a, wp0 and wp1 are opposite to each other.

Problem 4.6.1. In the parametrization of the tetrahedron, Example (b) in the
case p = 3, show that every 2-face is either a parametrization of a triangle or,
when given an orientation, equivalent to its negative. Moreover, each of the
triangular faces of the tetrahedron is parametrized by just one 2-face of a.

The boundary of an oriented p-cube (a, w) is the (p - 1)-chain consisting of
the sum of all the (oriented) (p - 1)-faces, I,, , P. 6 - o, 1 (a,E, cu,,). It is denoted
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by a(a, w). The boundary of a p-chain 2 r,C, is a I r,C, = 2 r, aC,. Thus a is a
linear operator from the vector space ofp-chains to the vector space of (p - ])-
chains, called the boundary operator. It also behaves well with respect to
equivalence; that is, if p-chain C is equivalent to p-chain D, then 8C is
equivalent to OD.

Proposition 4.6.3. For any p-chain C, p > 1, aac = 0.

Proof. For an oriented p-cube (a, w), aa(a, w) = 0 follows immediately from
Proposition 4.6.1, since the (p - 2)-faces cancel in pairs. Then we have

a0c=08 rC,=8 r,ac,=Yr,aac,=0. 1

For a 1-cube (a, w), the boundary consists of, roughly, the final point minus
the initial point. Thus the sum of the coefficients of a(a, w) is 0. In general, we
define the sum of the coefficients of a 0-chain C to be its Kronecker index,
denoted by IC = I(:Er1m1= 2, r,. It follows that for any 1-chain D,
IOD = 0. The converse is not true, but the condition for it to be true is topo-
logical and gives a hint of the relation between chain algebra and topology:

Proposition 4.6.4. A manifold M is connected iff every 0-chain C such that
IC = 0 is the boundary of some 1-chain D: aD = C.

Proof. Suppose M is connected and C is a 0-chain such that IC = 0. Then
C = r,m,, where r, = 0. Choose a point mo a M. For each m, we may
choose a C' curve a, from mo to m, since M is connected. We may assume that
a, is parametrized from 0 to 1, so that a, is a 1-cube defined on [0, 1]. Then the
1-chain D = r,(a,, du) has boundary

aD = r, a(a,, du) = rt(a.(1) - aj(0))

r,m,-(2rs)mo=:E r,m,=C.
Conversely, if M is not connected, then for each connected component M,

of M we define a partial Kronecker index I, on 0-chains by 1, r,m, = the
sum of those r, such that m, a M,. Since a 1-cube is entirely in M, or entirely
without, we still have I, aD = 0 for every 1-chain D. Now let Mo and M, be
different components and choose mo a Mo and m, e M1. Then m, - mo is a
0-chain C such that IC = 0, but 1,(m, - mo) = 1, so m, - mo cannot be a
boundary. I

A large class of regions can be parametrized by chains. We shall state some
theorems to that effect without proof, since they involve topological techniques
beyond the scope of this book.

Theorem 4.6.1. Let M be a compact, oriented manifold of dimension d. Then
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there is a d-chain C in M which parametrizes M itself and for which 8C is
equivalent to 0.

Another important class of parametrizable regions are the compact,
orientable manifolds with boundary. A subset N- = N U B of a manifold M
is a p-dimensional submanifold with boundary B if

(a) N is an open submanifold of a p-dimensional submanifold N+ of M.
(b) B is a (p - 1)-dimensional submanifold of N+.
(c) B is the topological boundary of N with respect to the topology of N+.
(d) At each point b e B there are coordinates x1, i = 1, ... , p, on a neigh-

borhood U of bin N+ such that B n U = {n f xln = O} and N n U =
{n I xln < 0).

If N is oriented, then B has a corresponding induced orientation, the one such
that whenever the coordinates x1 as in (d) are consistent with the orientation of
N, then the coordinates X2'. . , x', restricted to B, are consistent with the
orientation on B.

Theorem 4.6.2. If N- is a compact, oriented manifold with boundary B, then
there is a chain C which parametrizes N- such that eC parametrizes B with the
induced orientation.

[Theorem 4.6.2 implies Theorem 4.6.1 as the special case where B is empty.
Their proofs follow from the triangulation theorem of S. Cairns (Bull. Am.
Math. Soc., 1961). This theorem says that N- can be decomposed into pieces
diffeomorphic to simplexes and fitting together nicely. Then by using the
mappings of Example (b) we can get the parametrizing chain.]

Volume Elements. If M is an oriented d-dimensional manifold we define a
volume element on M to be a d-form I which is defined on all of M, is never 0,
and is consistent with the orientation of M in the following sense: For every
coordinate system x' on M which is consistently oriented with M, the co-
ordinate expression for S2 is S = f dx' . dxd, where f is a positive C °° func-
tion. For any positive C°° function g defined on all of M, gQ is a volume
element on M if S2 is, and, conversely, any two volume elements are positive
C°° multiples of each other. Moreover, any d-form is a C`° multiple of Q.

That a volume element always exists on an oriented manifold can be shown
by using a technical device known as a partition of unity to smooth out the
local coordinate volume elements dx' . . dxd into a globally defined one.
Alternatively, a riemannian metric defines an inner product on d-forms, and
since the d-forms at a point form a one-dimensional space, there are only two
of unit length. Only one of these is consistent with the orientation and the field
of these gives a d-form called the riemannian volume element. If ©,, . . ., Bd is a
local orthonormal basis of 1-forms, then I = 0, A .. A Bd is a local expression
for Q. For example, on E3 it is dx dy dz.
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If S1 is a volume element on M and (a, w) is a d-cube which parametrizes a
region of M, then the consistency of the orientation given by a at its regular
points gives us the fact that a*i1 = fw, where f >- 0 and f > 0 at the regular
points.

Examples. (e) Let M = R3 and let N- be the closed cylindrical surface:
N- = {(x, y, z) I x' + y2 = 1, 0 < z <- 1}. Then N- is a two-dimensional sub-
manifold with boundary consisting of two circles. For N+ we may take the
infinite cylinder ((x, y, z) I x2 + y2 = 1). N- may be parametrized by a single
2-cube defined by

a(u,v)_(cosu,sinu,v), 0<u52a, 0<v<1.
(f) In Example (d) the range of a, the closed solid ball N- in R°, is a p-

dimensional submanifold of R' with boundary S'-1. We may let N+ = R.
If w is either orientation of R', hence of N, then (a, w) is a parametrization of
N- such that 8(a, w) parametrizes S°-1. (It should be checked that the orienta-
tions do match. If w = dul.. duD is the notation for the orientation in the
range of a, then we might better write w' = dr dB, dB, _, for the same
orientation of R', now viewed as the domain of a.) The (p - 1)-chain 8(a, w)
is reducible since (alo, w1o) and each (a,,, a,,,,), i = 2, ..., p - 1, are constant
in one or more variables, so are equivalent to their negatives, hence to 0;
moreover, (a,o, w,o) and (a,,, w,,) are negatives of each other. Thus 8(a, w)
is equivalent to the irreducible chain consisting of one (p - 1)-cube (all, w,,),
which parametrizes Sy-1 with the induced orientation. It follows that
8(a,,, w11) is equivalent to 88(a, w) = 0, so (a,,, w,1) is a parametrization of
SD-1 of the type mentioned in Theorem 4.6.1.

We indicate briefly the relation between the algebra of chains and the Betti
numbers mentioned in Section 3.10 (Morse theory) and Section 4.5 (de Rham's
theorem). A p-cycle is a p-chain Z such that eZ is equivalent to the null chain 0.
A p-boundary is a p-chain B which is equivalent to aC for some (p + 1)-chain C.
The pth (real coefficients) Betti number of M is the integer B, such that there are
B, p-cycles Z,, ..., ZB, for which

(a) the only linear combination r,Z, which is a p-boundary is the trivial one
with all r, = 0, and

(b) for every p-cycle Z there is a linear combination 7 r,Z, such that Z -
r,Z, is a p-boundary. [If M is not compact, there may be no finite number of

Z, satisfying (b), in which case we say B,, = oo.)

By analyzing more carefully the method of proof of Proposition 4.6.4, it can
be shown easily that Bo is the number of connected components of M. Moreover,
if M is simply connected, then B, = 0, but not conversely. If d is the dimension of
M, then B, = 0 for p > d. If M is compact and orientable, then the Betti numbers
are symmetric; that is, B, = Bd _, (Poincare duality).
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4.7. Integration on Euclidean Spaces
We review here material which can be found in every book on advanced
calculus, at least in the two- and three-dimensional cases.

The (standard) measure of a rectilinear p-cube

U={(u',...,u')I a's u' _<b'}

is µ,U = (bl - a')(b2 - a 2). (b' - a'). Thus the function µ, assigns num-
bers to these cubical subsets of R'. The Riemann integral of a real-valued
function f defined on U, if it exists, is

N

f f dµ, = lim f(4µ, U,,
uy.»o 1=1

where U has been broken up into N smaller p-cubes Uf and a point xi has been
chosen in each U,. By the limit existing we mean that it must be possible to
make the sum be as close as we please to the supposed limiting value by
choosing all the U,'s sufficiently small, no matter what choice of the x,'s is
made. The integral can be proved to exist if f is continuous.

This definition is quite natural from the viewpoint of applications, where it is
thought of as generalizing the situation for a constant function f. For example,
if the density of a substance is constant, the mass is obtained by multiplying
the volume (measure) by the density. For variable density f, which is usually
assumed to be continuous, it is quite natural to think of the mass as being given
approximately by the sum of products f(x!)µ3Uj, where the U, are small cubes
on which f has practically constant value f(x,), xJ e U,. Thus the Riemann
integral f f dµ3 is a reasonable definition of the mass in the cube U. Most
physical applications of integration start with a definition of a quantity by a
similar process.

However, such limits of sums are difficult to evaluate (although approxima-
tions obtained by computers are being used more and more). For this reason
they are related to entirely different objects, iterated single integrals. This
method of evaluation of Riemann integrals of functions of several variables is
used so invariably that frequently the method of evaluation is confused with
the definition. For the same reason, superfluous integral signs are used to
denote the Riemann integral. The justification of the method of evaluation goes
under the name

Fubini's Theorem. If f is continuous on U, then the definite integrals

!rbD

ff(u',...,u'_1) =
a

f(u',...,u'-1,u')du'
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are continuous functions of the parameters ul, . ., u'-1, and the Riemann
integral off is given by

J" f dlLD = f, df., -1,
U Uy_1

where the (p - 1)-cube U,-, = {(ul, ... , u' -1) I a' <_ u' <_ b', i = 1,..., p - 1).
It follows by iteration that

f
bl

( f
b°-1 b°

Uf d i = Ja1 \ f 1 11 \Ja°
flul, .. , uv) duP) duP-1...l dul.f

(Of course, this merely reduces the problem back to one of a similar sort, the
evaluation of definite single integrals, which are themselves defined as limits
of Riemann sums. For these we have a similar situation: They are almost
invariably evaluated by applying the fundamental theorem of calculus, which
relates them to the process of finding antiderivatives.)

Although convenient for definitive purposes, restricting the domains of
functions to be rectilinear cubes is not adequate for most applications. To de-
fine the integral of a function f on a more general bounded domain D, we
enclose D in a rectilinear cube U and let

fD f dtln = fU ODf dl,,,,

where 1D is the characteristic function of D, defined by

(DDX1 ifxED,
0 if x 0 D.

Again, this definition is not very convenient for evaluative purposes, so it is
customary to reduce integrals on D to integrals on a cube by finding a 1-1 Cl
map of a cube onto D and applying the

Change of Variable Theorem for Riemann Integrals. If E and D are regions in

RD, p: E-> D is a 1-1 C1 map, and I = f f dp..p exists, then f, (f o 9, ) I J. I dµ,

exists and equals I, where J. is the jacobian determinant of q?; if T is given by
equations u' = F'(vl, . ., vu), i = 1, .. , p, where the u' are the Cartesian co-
ordinates on D, and the v' are the cartesian coordinates on E, then

J.(vl, .. , v°) = det (a1F'(v1, . ., v')), a, = alav'.

Note that if p is orientation-preserving at points where P. is nonsingular,
then J >_ 0 and we may omit the absolute-value signs. Note also that at the
singular points of 4p J = 0, so the theorem may be strengthened slightly by
only requiring that c be 1-1 on the regular set of T, that is, where q), is non-
singular.
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We illustrate this change of variable theorem in the case p = 2 by showing
how it can be used to give a common form of Fubini's theorem where the
interior limits are functions of the more exterior variables rather than con-
stants. Suppose that

D = {(x, y) I a < x - b, and for each x, h(x) < y 5 k(x)},

where h and k are given C' functions such that h(x) 5 k(x) for a 5 x 5 b.
We map the rectangle E = {(u, v) I a < u 5 b, 0 5 v < 11 onto D by ip: E--* D
which has equations x = u, y = (1 - v)h(u) (see Figure 17). Then

u=1

n
E

.0

xi

u=0
Figure 17

J = I (k(u) - h(u)) - 0 ( ) = k(u) - h(u) > 0. By the change of variable
theorem followed by Fubini's theorem,

J f(x, y) dµ2 = rF flu, vk(u) + (1 - v)h(u))(k(u) - h(u)) dµ2
D

= rb j f(u,
vk(u) + (1 - v)h(u))(k(u) - h(u)) dv) du.

a 0

Now each of the interior integrals, for each value of u, can be transformed by
the change of variable theorem for one variable; keeping u fixed and letting
y = vk(u) + (1 - v)h(u) we have dy = (k(u) - h(u)) dv, y = h(u) when v = 0,

c°'and k(u) when v = 1, so the interior integral becomes rrk u, d y.



190 INTEGRATION THEORY [Ch.4

Now the change of dummy variable, x for u, in the exterior integral yields the
usual form of Fubini's theorem for integrals on D,

f f(x, y) dµ2 = f b (rk(x)f(x,
y) dy) dx.

D a J)i(x)

4.8. Integration of Forms
When we turn to the integration of forms, the new element of orientation is
injected. This arises naturally in applications. For example, the work done in
traversing a curve under the influence of a force field depends, in sign, on the
direction along which the curve is traveled. It would be natural, from a physical
viewpoint, to formulate the definition in terms of limits of sums. However, the
usual difficulties encountered in handling such sums are magnified by the need
to integrate on curved objects. By now we should anticipate that such integrals
would be evaluated by means other than the definition. So instead of formulat-
ing such a limit-of-sums definition we give a definition in terms of Riemann
integrals, for which the evaluation problem has been resolved already by
Fubini's theorem.

Let 0 be a p-form defined on a region of a manifold M which contains the
range of an oriented p-cube (a, w), where a: U -,- M. Then we pull back 0 to
U, using the map a, to get a p-form a*0 defined on U. Recall from Section 3.9
that, in terms of coordinates, finding the expression for a*0 amounts to a
straightforward substitution of the coordinate formulas for a into the co-
ordinate expression for 0. Since we have chosen to consider w as being
±dul dun, w is a basis for p-forms on RP. Thus we have an expression
a*O = fw, where f is a C`° real-valued function on U. If we define an inner
product < , >, on p-forms on R' by letting w be unitary, that is, <w, w>, = 1,
then f = <a*0, w),. The definition of the integral of 0 on (a, w) is then

0 = f <a ©, w>v dF,n
(a, m) U

The integral of a 0-form 0 on a 0-cube m e M is defined to be the value Urn of
0 on m. The integral of a p-form 0 on a p-chain > r(C( is defined in the most
obvious way in terms of the integrals on p-cubes:

0=>r(J 0.

Examples. (a) The circle S' = {(x, y) I r2 + y2 = 1) in R2, with the counter-
clockwise orientation, is parametrized by (a, du), where a is defined on [0, 27T]
by a(u) = (cos u, sin u). The coordinate equations for a are thus x = cos u,
y = sin u. If 0 = (x dy - y dx)/(x2 + y2) then

a*0 = [cos ud(sin u) - sin u d(cos u)]/[cos2 u + sin 2 u]
= cost u du + sin2 u du = du.
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Now we have <du, du>, = 1, so

L,du) 0 = [0.2x]
1 dµ1 =

J
2' du = 2ir.

(b) The sphere S2 has been parametrized in Example (d), Section 4.6, with
the 2-cube a defined on U = [0, Tr] x [0, 27r] by equations

(x, y, z) = (cos u, sin u cos v, sin u sin v)
= a(u, v).

(The notation there was: p = 3, all = a, 01 = u, 02 = v, r = 1.) We define
the positive orientation of S2 to be the one for which the coordinates y,z,
restricted to S2, is a consistently oriented system in a neighborhood of (1, 0, 0).
This follows the outward-pointing normal convention in that 8x points out
from the ball bounded by S2 in R3 and x, y, z define what we consider to be the
positive orientation on R3. Then (a, du dv) is a parametrization of this posi-
tively oriented S2.

In Example (c), Section 4.5, we defined a 2-form T on R3 - {0} by T =
(x dy dz + y dz dx + z dx dy)/r3. We compute a*r by substituting the follow-
ing and employing Grassmann algebra:

a* dx = -sin a du,
a* dy = cos u cos v du - sin u sin v dv,
a* dz = cos u sin v du + sin u cos v dv,
a*r3 = 1

a*(dx dy) = a* dx A a* dy = sine u sin v du dv,
a*(dy dz) = cos u sin u cos' v du dv - sin u cos u sine v dv du

= cos u sin u du dv,
a*(dz dx) = sine u cos v du dv,

a*,r = [cos' u sin u + sin3 u cos2 v + sin3 u sine v] du dv
= sin u du dv.

The surface integral of r on (a, du dv) S2 (cf. the remark following
Theorem 4.8.2) is now easily evaluated:

I' rn f."29

L.du ,v,
T = fU sin u dµ2 = Jo

fo
sin u dv du = 4n.

(c) A 2-chain representing the three faces of a tetrahedron pictured in
Figure 18 is C = C1 + C2 + C3, where the C, = (a,, du dv) are given by
a, (u, v) = (0, u, (1 - u)v), a2(u, v) _ ((1 - u)v, 0, u), and a3(u, v) = (u, (I - u)v, 0),
where 0 < u < 1, 0 < v < I defines their common domain U. For 0 =
dy dz + dx dy we have

a*0 = du A d[(1 - u)v] = (1 - u) du dv,
a20 = 0 (each term has a dO = 0),
a3*0 = du A d[(l - u)v] = (I - u) du dv.



192 INTEGRATION THEORY [Ch. 4

Thus

fC o=JU (1-u)dµ2+ f 0dµ2+ f (1-u)dµ2
U U

1 1

= 2f f (1 - u)dudv = 1.o o

Translation to Vector Notation. For oriented integrals on E' and E3 the cus-
tomary vector notation is not difficult to translate to the notation of forms. In
fact, it will be found that the common methods of evaluating vector integrals
have the translation to forms concealed in them.

For line integrals the vector notation is f, F dr = f F T ds, where F is a
vector field, r is the displacement vector, T is the unit tangent field along C, and
s is arc length on C. The notation of forms is in common use and follows immed-
iately by substituting F dr = F'dx + F2 dy + F3 dz, where F', F2, and
F3 are the components of F.

For line integrals in the plane another type is encountered, the line integral
giving the flux of a vector field across a curve. The vector notation is Sc F N ds,
where N is the unit normal for the positive direction across C. It is transformed
to the other type by applying the Hodge star operator, which in E' is merely a rota-
tion by ir/2. Thus *N = T, andsince

For surface integrals in E3 the vector notation is f f s F do = 5$ s F N do,
where N is the orienting unit normal and da is the area element. Again, the *
operator can be used to give an oriented "unit tangent" to S, *N, which is equal
to El A E2 if El, E2 is an orthonornal basis of the tangent space of S consistent
with the orientation of S. To compensate, we apply * to F also, and obtain for the
integral on S: f fs F N do = f s F, dy dz + F2 dz dx + F3 dx dy, where F; _
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F' S,j = F' since 8, 8j = Sq. Thus the form we integrate comes from *F by
using the metric to lower indices.

In volume integrals the orientation is not usually mentioned, since it is in-
variably taken to be the "positive orientation" dx dy dz. With this convention
the customary notation and ours almost coincide:

fffvfdxdydz = fffvfdV = fvfdµ3.

Note that *f = f dx dy dz, so the * operator may have use here, especially in
combination with d to give "div."

Independence of Parametrization. To assure that the integrals we have
defined have geometric meaning it is necessary to establish two results on
independence of parametrization. The first is that the integrals of a p-form 0
on equivalent p-cubes are the same. The second is that the integral of 0 on a
parametrization of an "oriented subset" (and, in particular, of an oriented
submanifold with boundary) is independent of parametrization. The first
allows us to ignore the distinction, in integration theory, between equivalent
p-chains. The second allows us to define the integral of a form on an oriented
subset.

Theorem 4.8.1. If (a, co) and (fl, Sw), S = ± 1, are equivalent p-cubes, then for
any p-form 0 defined on the range of a and f,

f 0= f 0.

Proof. Since (a, w) and (14, 8w) are equivalent, there is a diffeomorphism
q: U -> V such that /3 ° c = a, where a: U - M and g: V -> M. It follows
immediately from the chain rule fl* ° (p* = a*, cf. Problem 1.8.2) and the
alternative definition of p* (Proposition 3.9.4) that 4p* ° * = a*. Thus we have,
if a*O = fw and g*0 = g&w, fw = w*(P*O) _ ,*(gSw) (g ° P}q *(SW). How-

ever, 9) must carry coordinates on V which are consistently oriented with 8w
into coordinates on U which are consistently oriented with w. This means that
the sign of the jacobian of 9) is the same as that of 8.

Let the equations for 9) be v' = F'(u', . , u"), i = 1, .. , p, where u' are the
cartesian coordinates on U, v' those on V. Then, if say w = dvl dv" _
du' du" (as forms on R"),

*(8w) = S ,*(dvl dv")

= Sp*dt'n n'p*dv"
= 8(a,1 F' dull) A A (O;, F" du'")

= 8det(d,F')du' du"

= SJ,ow.
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The same equation (between the first and last) obtains if to = -du' dup,

since this merely inserts - signs in the intermediate quantities. Thus fw =
(g o tp)p*(Sw) = (g o p) I J I w, since the signs of J. and S are the same; that is,
f = (g -.p) I J 1. Now by the change of variable theorem,

f B= f gdt,,p= f" (g f" f f 0. 1
(Leo) V U U (a.w)

Corollary. If C and D are equivalent p-chains, then fc 0 = fo 0.

Proof. Besides an obvious equality of sums of integrals over equivalent cubes

this requires an additional triviality: ffa ) 0 = 9.

Theorem 4.8.2. If p-chains C and D both parametrize the same region S of a
p-dimensional oriented submanifold N and 0 is a p-form defined on S, then

fce=ff0.

Outline of Proof. According to the above Corollary we may replace C
and D by equivalent chains, so we may assume they are irreducible, say,
C = sh.1 (a,, w,) and D = :E; = 1 ()3;, wj), where a, is defined on U, and fi, is
defined on V5. Let U, and Vj' be the corresponding sets of regular points. It is
important for the proof to use the fact that integration over S may be accom-
plished by integration over the subset consisting of the common part of the
ranges of the a,'s and fl,'s on their regular sets, that is, on

(u u (at(i n fi Vr)
( 1 (.1

The reason we may ignore the remainder of S is that the nonregular points
correspond to "sets of measure zero" in S, that is, the nonregular points do
not contribute to the integral over S; the boundary points of U, and V, are
lower dimensional and may be enclosed in slabs of arbitrarily small measure,
and in a neighborhood of a singular point of a,*, a, is approximated by the
tangent map a,* which maps the tangent space to a lower-dimensional sub-
space. The same situation prevails for P,. Making use of these facts reduces the
proof to the following computation:

L B=G f 0
c I (a,.wt)

L..
Uj

<ai*O, w(>, du,

t.1 f(a 1B1 vj)n U,
<-j *0, w(>p dg,

<Y,*ati 1*a,*0, wj>p dµp
v1 n .81

1 a' ul

f,j
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= L, V'I*B, wi)a diLp

= f B.
D

The fourth equality in this chain uses the change of variable theorem, with the
jacobian determinant supplied by the action of pi*a, I* as it was by q)* in the
proof of Theorem 4.8.1. The sets a , U,' n 9i Vj are all disjoint, i = I, ... , h,
j = 1, ..., k, and the inverses at 1 and fi I are defined on them because of the
assumptions, made in the definition of parametrization, that a, is 1-1 on U;
and that the a,Ui are disjoint, and similarly for V;. Thus there is no danger
of duplication in the sums in the computation.

Remark. Theorem 4.8.2 yields a definition of the integral of a p-form over a
"parametrizable oriented subset" S, the sort of subset which can be para-
metrized by a p-chain. It is evident that such a subset must be a p-dimensional
oriented submanifold "almost everywhere," that is, except on a subset of
measure zero, but unlike a p-dimensional submanifold with boundary, it may

include interior corners, edges, etc. The definition is obvious, f 0 = fc 0,
where C is any p-chain which parametrizes S.

Problem 4.8.1. (a) Suppose that 8 is a p-form on M such that for every
p-cube C in M, fc 8 = 0. Show that 8 is identically zero. (Hint: Choose co-
ordinates and construct small p-cubes in the coordinate p-planes.)

(b) Suppose that 6 and r are p-forms on M such that for every p-cube C
in M, Jc B = fc r. Show that 8 = r.

4.9. Stokes' Theorem
There is a generalization of the fundamental theorem of calculus to integrals
of exact p-forms on p-chains. This generalization unifies a number of theorems
which include, besides the fundamental theorem of calculus, the divergence
theorem in E2 and in E3 and Stokes' theorem for surface integrals. Since the
latter resembles the generalization most in the breadth allowed in the choice of
domain of integration, the generalization is called the general Stokes' theorem,
or simply Stokes' theorem. One commonly used treatment of this theorem
employs contravariant skew-symmetric tensor fields as well as a riemannian
metric and, in effect, the Hodge star operator of that metric. This approach
seems more geometrical, especially in E2 and E3, where only vector and scalar
fields need be used because the Hodge operator eliminates the fields of degrees
2 and 3. Of course, the Hodge operator is not mentioned explicitly, but is
hidden in the definitions of curl and div. However, the riemannian (or
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euclidean) structure is unnecessary and actually makes the formulas for the
higher-dimensional cases more complicated.

Before turning to Stokes' theorem we need an important result relating the
action of a map on forms with the exterior derivative operator.

Theorem 4.9.1. If rp: M -* N is a CW map and 0 is a p -form on N, then
dip*0 = rp* d0.

Proof. Since both operators, d and rp*, are local, that is, the value at m e M
of p*O depends only on the values of 0 in any neighborhood of rpm, and
similarly for d, we may employ coordinates. In fact, they are both linear, so it
suffices to prove the relation in the case where 0 is a monomial, say, 0 =
f dx' - dx', where x', .. , xe are coordinates on N. Then dO = df A dx' dx' ;
q>* dO = (p* df A p* dx' A A qq* dx', since rp* is a Grassmann algebra homo-
morphism (Proposition 3.9.4); but for any scalar field g on N, rp* dg = dp*g
(see the Remark after Proposition 3.9.4), so qp* dO = drp*f A dip*x' A Adgp*x'
On the other hand, we have

9)*0 = rp*frp*dx' A AqP* dx'

= cp*fdt*x' A - Adgp*x'.

Hence using the fact that d is a derivation and d2 = 0 gives

dp*0 = dqp*f Adrp*x' A - - Adp*x' _ rp* d0.

Theorem 4.9.2 (Stokes' Theorem). Let 0 be a (p - 1)-form defined on the
ranges of all the cubes of a p-chain C, where p > 0. Then f, d0 = fa, 0.

Proof. By linearity, it suffices to prove this in the case of a single p-cube
C = (a, w). Let

a*0=>(-l)'-lfdu'...du` 1du4+1 du'.

Then da*0 = a* dO = (:E, d, f) du' du'. We also suppose that w = du' du',
since in the other case there is a sign change on both sides. Let the domain of
a be U: b' < u' 5 b' + c' and the domain of a,, be U,. If we attach an ith co-
ordinate value of b' + ec' to U,, we obtain a face of U and a,£ is essentially the
restriction of a to this face. The induced orientation is

wte = (2e - 1)(-1)' 1 du' ..du'-1 du`+i , du'.

We extend the inner product < , >,_, to (p - 1}-forms on R" by making
the w orthonormal. Then it follows that <a,,*0, w,t>,_1 = <a*O, w,E>,_1 =
(2e - 1)f , and hence
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L0st .e emi. 040 0

= (2e - 1)I, I d1
t.e U, ti =b'+cc'

f u(=b:+cl
s

U

On the other hand, fU <a* dB, w>, dµ, _ 2, f, af, dµ,. We apply the first

step of Fubini's theorem to fu ',ft dµ, with the ith variable as the variable of
integration, obtaining

b1 + c1

f a dµp = f f a+f,(u', , u', . . ., u') du' dµn -.1
U U, It

= fu" . ., b1 + c', ... , u')
Uy

- f,(u', . ., b', ..., u')] dlp-1,

where the second step follows from the fundamental theorem of calculus. The

terms now match those of fe(a w) 0. 1

The following corollary is used to obtain Green's formulas in E2 and E3.

Corollary 1. (Integration by Parts.) Under the same hypothesis, if f is a real-
valued function defined on the domain of 0,

f
c 2c
dfne= f f0- fc fdo.

More generally, if 0 is a pform, T a qform, and C a (p + q + 1)-chain, then

BAT-(-1)' f 0Ad7.f dOAT=fc
cc f

(The proof follows immediately from the fact that d is a derivation.)

Corollary 2. If 0 is a (d - 1)-form defined on a compact oriented d-dimensional

manifold M, then fM dO = 0 and dO = 0 at some point.

Proof. By Theorem 4.6.1 there is a d-chain C in M which parametrizes M

and for which eC is equivalent to the null chain 0. Thus fM dO = fc dO =

fa.9=fo6=0.
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To prove the last part we may assume that M is connected, for otherwise we
would consider the restriction of 0 to a connected component of M. Let a be a
volume element for M. Then dO = fQ, where f is a real-valued Car function
on M. For any p-cube (a,, w,) in C, <a,* dB, w,>a = f o a,<a,*S2, w,>d has the
same sign at a regular point x of a, as f(a,x). Since

f <a,* dB, ws>e d d = 0,

f is either identically 0 or not of the same sign everywhere. In the latter case the
general intermediate-value theorem (Proposition 0.2.7.4) tells us that f must be
zero at some point. I

Examples. Stokes' theorem is often used in conjunction with a riemannian
structure. On an oriented riemannian manifold which is not compact it is
sometimes possible to find a (d - 1)-form 0 such that dO is the riemannian
volume element. It follows from Stokes' theorem that the integral of 0 on the
boundary of a region is the d-dimensional volume of the region. In E2 we may
take B = x dy, -y dx, or ax dy - by dx, where a + b = 1. In E3 we can use
x dy dz, y dz dx, or z dx dy. The integral of x dy in the positive direction around
a simple closed curve in E2 gives the area enclosed by the curve. The integral
of x dy dz on the boundary of a region in E3 gives the volume of the region.

On a riemannian manifold a generalization of the laplacian, 0.2 + 8y + 82i
on E3 is defined in terms of the Hodge star operator by V2f = * d* df. (V2 is
called the Laplace-Beltrami operator.) We can use Stokes' theorem to produce
uniqueness theorems for the elliptic partial differential equations associated
with V2. For example, Poisson's equation V2f = p has a unique solution up to
an additive constant, if any at all, on a compact orientable connected manifold.
In particular, the only harmonic functions, that is, solutions of V2f = 0, are
constants. The proof uses the fact that for a 1-form 0, B A * 0 is a nonnegative
multiple of the volume element and is 0 only at points where 0 = 0. For any
two solutions f,,f2 of V2f = p, g = fi - f2 is harmonic; that is, d* dg = 0.
We integrate 0 = g d(* dg) by parts, and since 8M is equivalent to the null
chain 0, 0 = fm g d* dg = - fm dg A * dg. But the only way that the integral
of a nonnegative multiple of the volume element can vanish is for the integrand
to vanish identically. That is, dg A * dg = 0, from which it follows that dg = 0
so g is constant on connected components of M.

Problem 4.9.1. Show that one case of Stokes' theorem is the fundamental
theorem of calculus.

Problem 4.9.2. Find an (n - 1)-form 0 on En such that dO = du' . du" and
which is radially symmetric, that is, can be derived from r2 = (u1)2.
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Problem 4.9.3. Extend the uniqueness theorem for Poisson's equation to the
case of a function on a manifold with boundary for which the values on the
boundary are specified. The solution is unique without the freedom to add a
constant. The value of * dg on the boundary is essentially the normal deriva-
tive of g at the boundary, so we also get a uniqueness theorem when the value
of the normal derivative on the boundary is specified.

Problem 4.9.4. Suppose that 0 is a p-form on M such that for every (p + 1)-
cube C in M, fee 0 = 0. Show that 0 is closed. (Hint: See Problem 4.8.1.)

Problem 4.9.5. Recall that for each p the set of p-chains is a vector space W,
over R. An element of the dual space lep = W,* of ', is called a p-cochain.
Define the coboundary operator 0*: ((D . `'p + 1 by

(a*J )CD+1 = f (eCF+l)

The (p + 1)-cochain 8*f is called the coboundary of the p-cochain f. The
operator 8* is linear and its square is the null operator: 8* 8*f = 0.

Problem 4.9.6. For each p-form T defined globally on a manifold M there is a
corresponding mappingf : W, -- )- R defined by

fC, = f T.

Show that f, is a p-cochain and that the function which sends T into f is linear.

Problem 4.9.7. A cochain f is a cocycle if 8*f = 0. Show that if r is a closed
p-form, then f is a cocycle.

Problem 4.9.8. A cochain f is a coboundary if there is a cochain g such that
8*g = f. Show that if T is exact, then f is a coboundary.

4.10. Differential Systems
Many systems of partial differential equations have a geometric formulation in
terms of differential forms. The principal reason for this is very simple. For
example, let x,y,z,p,q be coordinates on R5 and let S be a two-dimensional
submanifold on which x and y can be used as coordinates (that is, "inde-
pendent variables"). Then the condition that p = 8z/8x and q = 8z/8y on S is
that the differential form dz - p dx - q dy vanish on S.

A first-order partial differential equation is given by an equation F(x, y,
z, p, q) = 0. This specifies a hypersurface N of R5. A solution to the
partial differential equation, say, z = f(x, y), determines a two-dimensional
parametric submanifold S of N, z = f(x, y), p = (8Xf)(x, y), q = (8 f)(x, y).
This surface S is an integral submanifold of the three-dimensional distribution
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D on N given by the equation dz - p dx - q dy = 0. More formally, D is
specified by D(n) = {t I t e N. and <t, dz - p dx - q dy> = 0}. Of course,
there are a few difficulties with degeneracy: The points where F = 0 and
dF = 0 simultaneously must be eliminated because N is not usually a manifold
in a neighborhood of such a point; if there is a point n e N where dF is pro-
portional to dz - p dx - q dy, then the subspace D(n) specified above is all of
N. and D is not uniformly three-dimensional; finally, the solution surface must
be chosen so that x and y can be taken as coordinates on it. It will not usually
occur that the distribution D is completely integrable.

The above formulation and its generalizations have not been used extensively
to study partial differential equations. Some results have been obtained using this
means for analytic equations, by the great mathematician E. Cartan. However,
we consider that the geometric setting gives important insight into what one
should expect by way of solutions. In the following we shall abstract from the
above example, defining structures dual to distributions (see Sections 3.11 and
3.12). In particular, we shall obtain a dual formulation of Frobenius' theorem.

A k-dimensional codistribution A on a manifold M is a function which
assigns to m e U -- M a k-dimensional subspace 0(m) of the cotangent space
Mm*. It is C°° if its domain U is open and for each m e U there is a neighbor-
hood V of m and 1-forms wt, .., wk defined on V such that at each n e V the
subspace 0(n) is spanned by wl(n), ..., wk(n). To each k-dimensional co-
distribution A there is the associated (d - k)-dimensional distribution D given
by D(m) = {t I t e Mm, <t, w> = 0 for every w e .(m)}, and vice versa, for each
(d - k)-dimensional distribution D there is the associated k-dimensional co-
distribution A, given by 0(m) _ {w co e M,*, <t, w> = 0 for every t e D(m)}.
Clearly, if D is associated to A, then A is associated to D. The D and A asso-
ciated in this way are said to annihilate each other. If one is C so is the other.

A submanifold N of M is an integral submanifold of a codistribution A if N
is an integral submanifold of the associated distribution. A codistribution is
completely integrable if the associated distribution is completely integrable.

The local version of Frobenius' theorem (Theorem 3.12.1) is that for a com-
pletely integrable distribution D there are coordinates x' such that D(m) is
spanned by 81(m),..., a5(m) and the integral submanifolds of dimension h =
d - k are the coordinate slices xZ = ci', a = h + 1, . . ., d. It follows that the asso-
ciated codistribution A is spanned by the dxa in the coordinate neighborhood.t

t It should be evident that "x" = c"" and "dx" = 0" convey practically the same in-
formation. For this reason the codistribution formulation predominates historically.
Distributions were usually denoted in terms of a local I-form basis w" of the associated
codistribution by writing w" = 0 Before the formalization in terms of tangent vector
spaces and dual spaces the 1-forms seem to have been thought of as infinitesimal dis-
placements in the dual vector directions. Thus w" = 0 indicates that displacement is
allowed only in the directions of the distribution D.
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Any other 1-form belonging to A can be expressed as w = f" dx", where a is a
summation index running from h + 1 to d. (We will alsp use # as a summation
index with this range.) The exterior derivative dw = d,," A dx" is a "linear
combination"t of the dx" with 1-form coefficients df". If w" is another local
basis of A, then dx" = g"w°, where (ge) is a nonsingular matrix of C°° functions.
Then we have dw = df" A dx" = (gB d,,) A w°, which is a linear combination
of the w5's. Thus a necessary condition that A be completely integrable is that
dw be a linear combination of a local basis w" for every w belonging to A.
That this condition is also sufficient is the dual formulation of Frobenius'
theorem, which follows.

Theorem 4.10.1. A C m codistribution A is completely integrable iff for every
1 form w belonging to A the 2 -form dw is locally a linear combination r" A co"
of a local 1 -form basis co" of A, where the r" are 1 forms.

Proof. We have already seen that if A is completely integrable, then dw is such
a linear combination.

Suppose, conversely, that dw is such a linear combination whenever w e A.
In particular, for a local basis co" of A, the 2-forms dw" = TO A ws for some
1-forms r,. Then for any vector fields X, Y e D, the associated distribution,
we have 2 dw"(X, Y) = rf(X)w1'(Y) - rB(Y)w°(X) = 0. But by the intrinsic
formula for d, Section 4.3(3), we have 2 dw"(X, Y) = Xw"(Y) - Ycu"(X)
- <[X, Y], w"> = -<[X, y], w")', since the derivatives of w"(Y) = 0 and
w"(X) = 0 are 0. Thus [X, Y] is annihilated by a basis of A and therefore
[X, Y] E D. We have shown that D is involutive, so by the vector version of
Frobenius' theorem, D is completely integrable, hence also A.

Another way of stating the integrability condition of Theorem 4.10.1 is that
dw(X, Y) = 0 for all X, Y e D; that is, D annihilates dw. More generally, the
tangent spaces of an integral submanifold N (of any dimension) annihilate dw
whenever w e A. Indeed, if I: N--* M is the inclusion map, then the fact that N
is an integral submanifold means that I*w = 0 for all w eA. Thus we have
d(I *w) = I*(dw) = 0; that is, dw(X, Y) = 0 for all vector fields X, Y tangent
to N. This leads us to restrictions on the tangent spaces of an integral sub-
manifold N in order that some given vectors be tangent to N, as in the
following.

t This type of linear combination does not have unique coefficients as it does in the scalar
coefficient case. The degree of nonuniqueness is measured exactly by Cartan's lemma,
Problem 2.18.7.
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Theorem 4.10.2. Let A be a C ' codistribution and let X be a C °° vector field
belonging to the associated distribution D. Then for every integral submanifold N
to which X is tangent, the forms i(X) dw, where w e A, annihilate the tangent
spaces of N. In particular, if for some X E D and w e 0, i(X) dw does not belong
to A, then w is not completely integrable.

Proof. For any other vector field Yon N we have from above dw(X, Y) = 0.
But then < Y, i(X) dw> = 2 dw(X, Y) = 0. If there is an X E D and an w e 0
such that i(X) dw 0 A, then there can be no h-dimensional integral submanifold
N of D through points at which i(X) dw 0 A. Indeed, X would be tangent to
such a manifold, so by the first result N would be an integral submanifold of
the (k + 1)-dimensional codistribution spanned by A and i(X) do), making
dimN<h-1. 1

Remark. Once the 2-forms dw have been obtained, the restrictions on the
tangent space of an integral submanifold are given algebraically and thus may
be applied point by point. The above theorem could have been stated for a
vector x E N. at a single point n or the tangent vectors to a curve in N just as
well as the vector field X. What this means in terms of codistributions arising
from partial differential equations is that when boundary or initial values are
given, the tangent space of a solution surface may be restricted along those
values. In fact, the directions which do not give sufficiently many restrictions
are exceptional and are considered to be improper as tangents to the boundary
value submanifold. They are called the characteristics of the system.

First-order Partial Differential Equations. We want to consider a first-order
partial differential equation (PDE) for a dependent variable z and n independ-
ent variables x', . , xn. Letting p; = 8,z, such a first-order PDE will be given
in terms of a C' function F on an open subset of R2n+1 by

F(x'. , xn, p,, ... , pn, Z) = 0.

It is no more difficult to consider simultaneously the equations F = constant.
We use i,j, . . as summation indices running from I to n. A solution z =

f(xl, ., xn) will determine an n-dimensional submanifold of R2n+1 by the
additional equations p, = 8,f(x',.. , xn). This submanifold is an integral
submanifold of the two-dimensional codistribution 0 spanned by w° = dFand
wl = dz - p, dx'. Of course, we must restrict to the open submanifold M of
R2n+1 on which w° and wl are (pointwise) linearly independent. Conversely,
any n-dimensional integral submanifold of A on which x',. .., xn are co-
ordinates yields a solution of the PDE. Let D be the associated distribution.

Since dw° = d2F = 0, only dw' = dx' do, need be used to give restrictions
on the tangent spaces of integral submanifolds as in Theorem 4.10.2. Let us
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determine those vector fields X such that i(X) dwl e A, that is, the charac-
teristic vectors of A. Letting 8,, P', and 8Z be the coordinate vector fields of the
coordinates x', p,, and z, we may write X = X'8, + Q,P' + XZ82. Our assump-
tions are that X e D, X 96 0, and i(X) dwl = fw° + gw' for some functions
f and g. These give us equations w°(X) = w'(X) = 0 and X' dp, - Q, dx' =
f(F, dx' + G' dp, + F. dz) + g(dz - p, dx'), where G' = P'F. Thus the com-
ponents of X and the functions f and g satisfy the following:

F,X'+G'Q,+X,FZ=0,
-p,X'+X.=0,

Qt = -fF, + gpi,
X'=fG',
0=fFz+g.

The first of these equations is a consequence of the remaining ones, and we
can solve the latter for X, obtaining

X = f(G'a, - [F1 + p1F:]P' + p1G'a:)

From this we conclude first that a characteristic vector is unique up to a scalar
multiple, since we have been able to solve for X on the assumption that it is
characteristic. Moreover, we are free to choose any f # 0, and having done so
the solution for X is not the contradictory solution X = 0 at any point. For if
G'e, - [F, + p,Fz]P' + p,G'0 = 0, then G' = 0 and F, = -p,F2, from which
we obtain w° = dF = Fz(-p, dx' + dz) = F2w', showing that w° and w'
would be linearly dependent at points where X = 0. Finally, we observe that
the I-forms i(X) dw' = f(w° - Few') are unique up to a scalar multiple. We
incorporate these results into the following theorem.

Theorem 4.10.3. (a) The two-dimensional codistribution

0={dF,w'=dz-p,dx')
of a first-order PDE has a unique one-dimensional distribution (D of characteristic
vectors.

(b) The distribution D is spanned by the vector field X = G'8, - [F, + p,F2]P
+ p,G'8Z, where dF = F, dx' + G' dp, + FZ8=.

(c) If D is the associated distribution of 0, then the linear map dw': D --+
T*M is nonsingular and its range intersects A in a one-dimensional codistribution
which is the image of t under i(.) dw'.

(d) If E(m) is a k-dimensional subspace of D(m) which contains no nonzero
vector of t(m), then 0(m) and i(E(m)) dw'span a (k + 2)-dimensional subspace
Of Mm*.

(e) If N is an n-dimensional integral submanifold of A, then for every m e N,
N contains a characteristic curve (= an integral submanifold of (D) through m.
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Proof. Parts (a), (b), and (c) have been proved above. Part (d) follows im-
mediately from (c), since i(E(m)) dwl is a k-dimensional subspace of M,*
which intersects 0(m) only in 0.

Suppose that N is an n-dimensional integral submanifold of A and that
m e N exists such that X(m) 0 Nm. We apply (d) to E(m) = Nm, with k = n. By
Theorem 4.10.2, N. is annihilated by 0(m) + i (Nm) dwl. But 0(m) + i (Nm) dw'
has dimension n + 2 and so annihilates only a space of dimension 2n + 1
- (n + 2) = n - 1, which is a contradiction. Hence we must have X(m) e N.
for every m e N. If I: N -* M is the inclusion map this means that X is
I-related to a vector field XN on N. The integral curves of XN are mapped by I
into integral curves of X, and the range of an integral curve of X is a charac-
teristic curve. This proves (e). I

Remark. Part (e) of Theorem 4.10.3 is basically a uniqueness theorem, but
as is frequently the case with uniqueness theorems, it gives information about
existence of solutions. In particular, if an (n - 1)-dimensional integral sub-
manifold which is transversal to D can be found, then it can be pushed along
the characteristic curves to produce an n-dimensional integral submanifold.
When n = 2 it is easy to realize one-dimensional integral submanifolds trans-
versal to 1 as the integral curves of a vector field Y e D which is independent
of X.

Theorem 4.10.4. Let P be an (n - 1)-dimensional integral submanifold of A
such that X(m) 0 P. for every m e P and let {µe} be the flow of X. Then
N = {µ,p I p e P, ;hp is defined} is an n-dimensional integral submanifold of A.

Proof. First we indicate how to show that N is a submanifold. If N p is
defined, then there is a coordinate neighborhood V of p in P and E > 0 such
that µ,q is defined whenever q e V and t - E < s < t + E. We then take as
coordinates of µ,q the n - 1 coordinates of q and the number s.

Any tangent vector in N. is a linear combination of X(m) and a vector of
the form µe# Y, where Y e P,, and m = u,p. Since X e D, it suffices to show that
µe* Y e D(m) for all such Y, or equivalently, w°(µ,e# Y) = w'(,u,* Y) = 0. Fix Y
and let ft = w°(µe* Y) and gt = w'(N.e# Y). Because P is an integral submanifold
of A, we have fO = gO = 0. We shall express the derivatives of f and g in
terms of the Lie derivatives of w° and w' with respect to X. In fact, we have
Lxw" = d/dt(0)(tc,*w1). Thus

d
(0)f(t + s) = dt (0)(w°(µe*µs* Y))f s wt

d
= d (0)(µ4*0°(µs* Y)) = Lxw°(µs* Y),
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and similarly, g's = Lxw'(µ,* Y). Now we use the formula Lx = i(X) d + di(X)
(Theorem 4.4.1). Since w° = dF, Lxw° = i(X) d 2 F + di(X)w° = 0 + dO = 0,
and it follows that f' = 0, f is constant, and hence f = 0.

We have already seen that i(X) dw' = w° - Fzw'. Thus Lxw' = i(X) dw'
+ di(X)w' = i(X) dw' = w° - F2w'. Applying this to µ,*Y we obtain the
fact that g satisfies a linear first-order ordinary differential equation:

g's = fs - FF(µsp)gs = -FZ(J2 p)gs.

But the initial value is 0, so it can be shown that g = O.

Problem 4.10.1. If A and X are as above, show that there are local bases
0°, 0' of A such that i(X) do° = 0 and i(X) dB' = 0.

Problem 4.10.2. Show that there are many candidates at each point m for the
tangent space of an n-dimensional integral submanifold of A. Specifically,
choose a basis X° = X(m), Xk e D(m), k = 1, ..., n - 1, such that for each
k the choice of Xk is made from the subspace annihilated by w°,w', i(X,) dw',
..., i(XK_1) dw'.



CHAPTER 5
Riemannian and
Semi-riemannian Manifolds

5.1. Introduction
For a given manifold we would like to recover and construct as many geo-
metric notions as possible from our experience. These may include such
notions as distance, angle, parallel lines, straight lines, and one which is trivial
in the euclidean case-parallel translation along a curve. The choice of which
features we will try to generalize to arbitrary manifolds will be determined by
a desire to include the torus, the surface of an egg or pear, and even more
irregular surfaces. On these manifolds, the notion of parallel lines, as well as
some of the properties of straight lines, seem meaningless. However, the
concepts of angle, distance, length, and the shortest curve joining two points
are still meaningful. We shall find that the concept of parallel translation of
tangent vectors along a curve is basic, and that such a notion is associated in a
natural way to a reasonable idea of length of a vector. To see what it might
mean, picture a curve on a surface in E3 with a tangent to the surface at the
initial point of the curve. In general, this tangent cannot be pushed along
the curve so that it remains parallel in E3 since we want it to be tangent to the
surface always. We can require, however, that whatever turning it does is only
that necessary to keep it tangent to the surface, so that at any instant the rate
of change of the tangent will be a vector normal to the surface.

Closely related to the concept of parallel translation is the notion of the
absolute or covariant derivative of a vector field in a given direction or along
a curve. This is a measure of the deviation of the vector field from the field
displaced by parallel translation. In E°, a vector field is parallel if its com-
ponents are constants when referred to a cartesian basis. A measure of how
much a vector field is turning is given by the derivatives of its components,
which are themselves the components of a vector in the direction of turning.
For a vector field on a surface we want only that part representing a twisting
206
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within the surface itself, so we project the derivative vector orthogonally
onto the tangent plane of the surface. This agrees with our previous notion of
parallelism since the projection is zero if and only if the turning is in a direction
normal to the surface.

In E4, besides possessing the property of minimizing distances, a straight
line has its field of velocity vectors parallel along the line, provided the
parameter is proportional to distance. When the parallel translation on an
arbitrary manifold is the one associated with some metric, the distance-
minimizing property of a curve is a consequence of the parallel velocity field
property, and, except for changes in parametrization, the converse is also true.
To get a notion corresponding to that of a straight line in E° even when only
parallelism and not distance is given, a geodesic will be defined as a curve with
a parallel velocity field.

To keep track of these and other notions the diagram below is useful. An
arrow should be read "leads to."

fundamental bilinear form

Ilength of vectors
length of curves angle parallel translation absolute derivative

distance geodesics curvature

There are some exceptions to this diagram in that lengths of nonzero vectors
are not always positive (as in the theory of relativity), since then angle has no
meaning and length challenges the imagination. For these exceptions the con-
cept of the "energy" of a vector or curve has been found to be a meaningful
and effective substitute for length.

5.2. Riemannian and Semi-riemannian Metrics

We shall follow Riemann's approach in developing a metric geometry for
manifolds since such structures occur naturally in physical models and the
various notions introduced in Section 5.1 can be defined in terms of this metric.
The resulting geometry is therefore intrinsic; that is, the geometrical properties
of the manifold are a part of the manifold itself and do not belong to some
surrounding space. It is true that one common method of obtaining riemannian
structures is by inheritance from an enveloping manifold, such as Ek, but the
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mechanism of this inheritance is another study, which we shall not undertake
here.

Accordingly, let M be a manifold. A metric or fundamental bilinear form on
M is a C °° symmetric tensor field b of type (0, 2) defined on all of M which is
nondegenerate at every point.

Problem 5.2.1. If M is connected, show that the index of b is constant on M.

In the nonconnected case we cannot prove that the index of b is constant, so
we assume this is always the case. If the index is 0 or d (= dim M), so that the
metric is definite, the metric is called a riemannian metric, and the resulting
geometry is called riemannian geometry. The pair (M, b) is then called a
riemannian manifold. If the index is neither 0 nor d, the metric is said to be
semi-riemannian. In case the index is I or d - 1 it is called a Lorentz metric.
Minkowski space Ld is Rd with the Lorentz metric

b = du' & du' - due ® due -. - dud 0 dud.

If gravitational effects are ignored, L4 is a model of a "space-time universe,"
and a study of its geometry gives insight into such relativistic phenomena as
"Lorentz-Fitzgerald contraction" and the meaninglessness of "simultaneity."

We shall find it convenient on occasion to employ the symmetric notation
< , >=b( , ).

A sufficient condition for the existence of a riemannian metric on a manifold
is paracompactness (see Section 0.2.11). All of the usual examples have this
property and it is difficult to construct one without it. Examples from physics
have a profusion of riemannian metrics (see Chapter 6).

The existence of Lorentz and other semi-riemannian metrics depends upon
other topological properties; for example, a manifold possesses a Lorentz
metric if it has a C°° one-dimensional distribution, that is, a smooth field of
line elements. A necessary and sufficient condition that a compact manifold
have a smooth field of line elements is that it have vanishing Euler charac-
teristic If a manifold has a nonzero C°° vector field, then that field spans a
smooth field of line elements and the manifold has a Lorentz metric. Since the
Euler characteristic of an even dimensional sphere is 2, it does not possess a
Lorent7 metric. However, the torus and the odd-dimensional spheres do
possess Lorentz metrics. The higher-dimensional tori have metrics of any
given index between 0 and d, but the study of when this happens in general is
very difficult.

5.3. Length, Angle, Distance, and Energy
The notions of length, angle, and distance make good sense only in the
riemannian case, so we shall assume for the moment that b is a positive definite
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metric on a manifold M. The length of a tangent vector v e M. is defined to be
IIvII = <v, v>1/1. The angle 0 between nonzero vectors v and w in M. is the
number 0 between 0 and IT such that cos 0 = <v, w>/(IIvJI.IIwli). This is well
defined, since J <v, w>1 _< IIvII ' II w II (see Problem 2.17.5).

The length of a curve y: [a, b] a M, denoted by lyl, is the integral of the
lengths of its velocity vectors:

IyI = f
b

IIy*ti! dt.
a

Proposition 5.3.1. The length of a curve is independent of its parametrization.

Proof. We first note for every a e R and v e M. the fact that IIavII = jai IIvII.
This follows easily from the bilinearity of b.

Let f: [c, d] -. [a, b] be a reparametrizing function for a curve y: [a, b] -* M;
hence f' > 0 and the reparametrization is the curve r = y o f: [c, d] -- M. By
the chain rule we have r, = f' y* -f from which

IT fdllr*SIIds
d

= f IIy*(fs)II(f's) ds

= f IIy*tII dt
a

= IyI 1

We define the parametrization by reduced arc length as that parametrization
= y o f of y for which IIr*II is constant and defined on the unit interval

[0, I ]. This parametrization may be obtained as follows when it exists. Let y be
a C° curve defined on [a, b] such that IyI = L. We define the reduced arc
length function g of y by

gt L fa IIy*uil du.

The derivative of g is Iy* II/L, so that g is nondecreasing. If g is increasing, then
it is I-1 and has an inverse f: [0, 1] --* [a, b]. Then r = y -J is a reparametriza-
tion of y such that the length of the part of r between 7-0 and rh is hL. In general
r is only continuous, but if y* never vanishes, then r is C_.

The distance between the points m and n on the riemannian manifold (M, b),
denoted by p(m, n), is the greatest lower bound of the lengths of all para-
metrized curves from m ton; that is:

(a) p(m, n) < IyI for any curve y from m to n.
(b) There are curves joining m and n which have length arbitrarily close or

even equal to p(m, n). Thus for every e > 0 there is a curve y from m to n such
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that lyi - e < p(m, n). [If M is not connected, then for m and n in different
components the set of lengths {jyj}, where y is a curve from m to n, is empty.
For such points we set p(m, n) = +oo.]

The distance function p has the properties:

(1) Positivity: p(m, n) ? 0.
(2) Symmetry: p(m, n) = p(n, m).
(3) The triangle inequality: p(m, p) < p(m, n) + p(n, p).
(4) Nondegeneracy: If p(m, n) = 0, then m = n.

Thus, by Section 0.2.2, (M, p) is a (topological) metric space.
Properties (1), (2), and (3) are easy to establish. The proof of (4) depends

upon the continuity of b, the validity of (4) in euclidean space, and the Haus-
dorff property of M. We shall limit ourselves to proving (4) in the euclidean
case (see Theorem 5.4.1).

A curve y from m to n such that Iyj = p(m, n) is said to be shortest. A shortest
curve need not be unique.

If we turn to the semi-riemannian case again, the above notions lose most of
their meaning and we utilize instead the notion of the energy of vectors and
curves. The energy of v e M. is defined to be <v, v>; the energy of a curve y is

E(y) = J<y*t, yt> dt. The terminology of relativity theory is used to specify
the possibilities for the signs of energy. Thus a vector v is called time-like if the
energy of v is positive, light-like or null if the energy vanishes, and space-like if
the energy is negative. A curve y is called time-like, light-like, or space-like if
all its velocity vectors y*t are of the specified type. The null vectors at m form
a hypercone in M. (see Section 2.21).

The concept of energy is useful in the riemannian case as well as the semi-
reimannian case, and it is important, for unifying purposes, to establish a
relation between energy and length in the riemannian case. We derive this
relation from the Schwartz inequality for integrals:

(5 (ft)(gt) dt) b (ft)2 dr fb (gt)2 at.
a a a

Here we assume that f and g are continuous real-valued functions defined on
[a, b]. It is known that equality obtains only if one off, g is a constant multiple
of the other. For a curve y: [a, b] -+ M, we apply this to the functions f = 1
and g and our conclusion is

1y12 5 (b - a)E(y). (5.3.1)

The condition for equality is that g be constant, that is, y is parametrized pro-
portionally to arc length. Among all the parametrizations of a curve there is
none with minimum energy, since we may take b - a arbitrarily large. How-
ever, if we fix the parametrizing interval then energy does attain a minimum
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among all reparametrizations on that interval, and more significantly we obtain
a relation between distance and energy, as follows.

Proposition 5.3.2. (a) The energy of a curve parametrized by reduced arc length
is the square of its length.

(b) Among all the reparametrizations of a given curve y on the interval [0, 1]
the parametrization by reduced are length has the least energy.

(c) There is a shortest curve from m to n iff there is a curve from m to n
parametrized on [0, 1 ] which has least energy among all such curves.

Proof. (a) In (5.3.1) the left side, lyl2, is invariant under changes of para-
metrization. Thus (a) follows by taking b = 1, a = 0 and making the
parameter proportional to arc length, that is, by using the reduced are
length parametrization.

(b) If y is the reduced arc length parametrization of a curve and r is some
other parametrization on [0, 1], then E(y) = IyI2 = ITI2 5 E(r), so y has the
least energy for the [0, 1]-parametrizations.

(c) Suppose y is a curve from m to n which is shortest. We may assume that
y is parametrized by reduced arc length.t Then for any other curve r from m to
n parametrized on [0, 1], we have by (5.3.1) and the minimality of 1Y I, E(Y) _
IYJ2 5 1T12 < E(r). Thus y has the least energy among such curves.

Conversely, let y have the least energy among [0, 1]-parametrized curves
from m to n. For anyt other such curve r, let r' be the reduced arc length
reparametrization of T. Then we have IyI2 = E(y) 5 E(r') = IT' 12 = IT 12, so
that y is shortest among such curves.

Remarks. (a) If we wish to develop a theory of shortest curves in a rieman-
nian manifold it suffices to consider least-energy curves among those para-
metrized on [0, 1]. Since the latter makes sense on a semi-riemannian manifold
as well, we use it rather than the more geometric notion of length.

(b) If the circle Sl is given a riemannian metric then there will be pairs of
"opposite" points for which two shortest curves from one to the other are
obtained, the two arcs of equal length into which S1 is separated by the removal
of the points. This nonuniqueness of shortest curves is a common occurrence
in global riemannian geometry, but it can be proved that there is a unique
shortest curve from a given point to those points which are "sufficiently near."

(c) There may be points m and n in a riemannian manifold for which no
shortest curve exists, even if we eliminate the obvious counterexample of a
nonconnected manifold with m and n in different components (see Problem
5.4.1).

t To make these arguments rigorous it must be shown that there is no loss in discarding
curves not having a reduced arc length parametrization, that is, those for which the
velocity vanishes at some points.
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5.4. Euclidean Space
In this section it is shown that the sort of structure introduced by means of the
distance function does not violate our intuition by giving a particular rieman-
nian structure on Rd and showing that the shortest curve joining two points is
what it ought to be, a straight line.

Let u` be the cartesian coordinates on Rd. At every point m E Rd, a/au'(m) _
a,(m) is a basis of R so we may define b by specifying its components as real-
valued functions on Rd. We set b;; = Si,. For v = v'a,(m), w = w'a,(m) e R,dR
this means

<v, w> v`w',
4=1

which is the usual formula for the dot product in Rm.
The metric b is called the standard flat metric on Rd and El = (Rd, b) is

called (ordinary) euclidean d-space.
A C W curve in Rd is given by d real-valued C- functions ys = (f's, .., f ds).

Since f' = u' o y, the velocity field of y is y* = f' a, o y. Thus
a \

(f' )21112
f=1 I

and the length of y is
6 d(P's)2)J/2is.

a

This is the classical formula for the length of y from m = ya ton = yb in Ed.
If y is a straight-line segment from m = (ml, . , md) to n = (n',.. ., nd)

with the usual parametrization:

YS =In +sv
= (m1 + st",.. , and + svd),

where 0 <_ s < I,r = n - m, then the f'' = r' are constant for each i =
1, ..., d. Consequently, Jyj = (Z, (x`)2)12, which is the usual formula for the
distance from m to n. We also know by condition (a) in the definition of p that

p(m, n) < JYJ = (G (xi)2/11/2

The claim is that p(m, n) = lye, in accordance with condition (b). We show
that there are no shorter curves from m to n, so that p(m, n) is the usual dis-
tance in Ed.

Theorem 5.4.1. Let y be the straight-line segment in F,d from m to n and r any
other curve from m to n. Then Irl > I y1, with equality holding iff T is a repara-
metrization of y. Thus the shortest curve joining two points in Ed is the straight-
line segment joining the two points.



35.5] Variations and Rectangles 213

Proof. We decompose r* into two orthogonal components, one parallel to y
and the other perpendicular to y. Then we show that the integral of the length
of the parallel component alone is at least as great as IyI. Thus r will be longer
than y if the perpendicular component is not always zero or if the parallel
component is not always in the right direction. Now let us make this precise.

The "constant" unit field in the direction of y is X = a'8t, where a' = v'lj yI
and v' = n' - m'. The parallel component of T* is <T*, X o r>X o r, and it has
length g = <r*. X o r> since iI X 1. If 0 is the angle between X and r* we
have

11'r* 11 COS e = IIr*II IIXiI cos e = g IIT*

and equality holds only if r* = gX o T and g > 0.
Let Ts = (f's, ..., fds), a < s <_ b. Then T*s = (f''s)a,(rs) and gs =

Z -if i's = (a f')'s. Since Ta = m and rb = n we have f'a = m' and f'b = n'.
Thus

Ir1

=fbllr*SIIds>_

f gsdsa'(b-f'a)
_ a'v'

= M.
If equality holds, then r* = gX o r and g 0. Then f''s = a'gs, so f's =
m' + a' la gt dt = m' + a'hs (defining hs). Thus rs = y(hs/IyI ), which shows
that r is a reparametrization of y.

Proble 5.4.1. Let M be R2 with the closed line segment from (-1, 0) to
(1, 0) re oved and let the metric on M be the restriction of the euclidean metric
to M. (O serve that M is a manifold and the domain of the distance function
excludes [ -l, 0), (1, 0)].)

(a) Wha is the distance in M from the point (0, 1) to the point (-1, -1)?
Is there a curve in M between these two points having this distance as its
length?

(b) Which pairs of points in M are at the same distance apart as they are in
E2?

5.5. Variations and Rectangles
In Section 5.4 it was shown that the shortest curve between two points in Ed is
the straight-line segment. Thus if we have a one-parameter family of curves y,
with the same endpoints and same parameter interval, such that yo is the line
segment, then E(y,) has a minimum when t = 0. Hence if E(y,) is a dif-
ferentiable function of t, its derivative must vanish when t = 0. This property
of a straight line is a likely candidate for a definition of a "straight line" or
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geodesic in a metric manifold, and is in fact the one often used. However, the
definition of a geodesic given below will be closer to the notion of not bending.
A straight line does not bend; that is, its velocity field is a parallel field (see
Section 5.12).

We begin by defining the idea of a smooth one-parameter family of curves
which will be called a C1 rectangle.

A C °° rectangle Q is a C °° map of a rectangle in Ra into a manifold M. Thus
the domain of Q will be of the form [a, b] x [c, d]. Usually we shall have
c = 0 (see Figure 19).

The curves Vt given by fixing t and varying s, yts = Q(s, t), are called the
longitudinal curves of Q. The curve yc is called the base curve of Q.

(a, d)

(a, t)

(a, c)

ry

'Y
(s, d) (b, d)

(s, t)
(b, t)

(s, c) (b, c)

Figure 19

The curves 'y given by fixing s and varying t,'yt = Q(s, t), are called the
transverse curves of Q. The initial and final transverse curves are °y and by,
respectively.

The vector field associated with Q is the "vector field," denoted V, along the
base of Q with value at each point of the base curve equal to the velocity vector
of the transverse curve through that point. It is not a vector field, strictly
speaking, but a map V: [a, b] -- TM. In symbols, the definition is V(s) _ 'ysc.

Proposition 5.5.1. Let y be a C' curve and V a vector field along y whose com-
ponents in any coordinate system are C m functions of the parameter of Y. Then
there is a C °° rectangle Q with y as its base curve and V as its associated vector
field.
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We shall not prove this proposition. However, Q is easily constructed if y
lies in a coordinate system, and, since y is compact, the general case may be
handled by piecing together the parts of Q from each coordinate system in a
finite number of systems covering y. There is no unique choice for Q.

It is occasionally easier to work with broken C`° rectangles. These are con-
tinuous maps of a rectangle in R2, [a, b] x [c, d], with [a, b] divided into a
finite number of intervals [a, s1], [sl, s2], . . , [sk_1, b], such that the map is a
C°° rectangle when restricted to each subrectangle [s,,_1i x [c, d], where
so = a, sk = b, and h = I, ..., k. The associated vector field is then said to be
a broken C m vector field along the base curve y,

If the initial and final transverse curves of Q are the constant curves, ayt = m
and °yt = n for every t, then Q is called a variation among curves from m to n.
If we are interested in comparing the base curve ye with other curves from m
to n, then Q is called a variation of y, In these cases V(a) = 0 and V(b) = 0.
Conversely, if V is a vector field along the curve y with V(a) = 0 and V(b) = 0,
then there is a variation with V as its associated vector field. We call V an
infinitesimal variation of y.

A (broken) C m curve y in the riemannian manifold M is said to be length-
critical if dIytj/dt(0) = 0 for every variation of y having y = yo. It is length-
minimizing if ly,J is a minimum when t = 0 for every variation of y such that
y = yo. We define energy-critical and energy-minimizing similarly, replacing

Iytl by E(yt)
These notions of length-minimizing and energy-minimizing are not quite the

same as the notions of shortest and least-energy in Section 5.3. A shortest
(least-energy) curve has the least length (energy) among all possible curves
between the endpoints, whereas length (energy)-minimizing involves a com-
parison with only those curves passing through some neighborhood of the
given curve. Thus a curve may be length-minimizing but not shortest, because
there may be a shorter curve which follows a different sort of path in a topo-
logical sense, say, by going around a different "hole" in the space. On the other
hand, it is obvious that shortest (least-energy) curves are always length
(energy)-minimizing, since the derivative of a function of t at an absolute
minimum always vanishes.

Since ly,J is independent of the paramctrization of y,, the notions of length-
critical and length-minimizing are not properties of a parametrized curve but
rather of a curve thought of as a collection of points. On the other hand, when
we replace length by energy the parametrization becomes significant, so that
the parametrization of an energy-critical curve has a special meaning. In the
case of non-light-like curves, in particular for all curves in the riemannian case,
this special parametrization is proportional to arc length, but even for light-
like energy-critical curves there are special parametrizations to fit the metric.
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A length (energy)-minimizing curve is also length (energy)-critical but not
conversely. For an example to illustrate the latter fact one can take an arc of a
great circle which goes more than halfway around an ordinary euclidean sphere
in E3, parametrized by reduced arc length. There are shorter nearby curves
between the endpoints of such an arc so it is not length-minimizing, but it is
length-critical. In Section 5.13 we shall see that in the riemannian case an
energy-critical curve is also length-critical, so nothing is lost in emphasizing
energy, whereas we gain generality by including the semi-riemannian case and
also allowing curves which have vanishing velocity at some points.

5.6. Flat Spaces

A coordinate system on a semi-riemannian manifold (M, b) is called affine if
the components of b are constant. A semi-riemannian manifold is said to be
fiat if there is an affine coordinate system at every point. We shall show later
that this is equivalent to the vanishing of a certain tensor called the curvature
tensor. The euclidean and Minkowski spaces are flat.

Theorem 5.6.1. In a flat space the energy-critical curves are those corresponding
to straight lines in any affine coordinate system.

Proof. We develop an analytic condition for a curve y to be energy-critical.
Since the range of y is compact, we cover it by a finite number of affine co-
ordinate systems. Thus we may assume that the domain (a, b] is subdivided by
points ao = a, a,, . .,a. = b, such that y maps each interval [a._,, as],
a = 1, ., n, into an affine coordinate neighborhood.

Let us fix our attention on one such interval [a,_,, a.]. A variation Q of y
has as its expression in terms of affine coordinates x' a set of d functions
f' = x' o Q of two variables s and t, where as _, < s < a0, and t runs through a
neighborhood of 0. By the assumption that the x' are affine, the metric b is
given in terms of them by b = b, dx' dx', where the b;, are constant and form
a nonsingular symmetric matrix. The velocity field of the curve y, is then
Yt* = f d, ° Vt, where f' = 8f'/bs, so that the energy of y, is a sum of n
integrals of the form

a,

E.(t) = b;,ffs'(s, t) ds.

The condition that y = yo be energy-critical is that Za, 0. In com-
puting ER(0) it is permissible to differentiate under the integral sign with
respect to t:

Ea(0) = 2 f a b,5fffL(s, 0) ds, (5.6.1)1
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where the subscripts s, t on f' again indicate partial derivatives. This integral
can be integrated by parts, letting u = f' and dv = ft', ds, to obtain

Ea(0) = 2b,jLRf'(aa, 0) -fLf'(aa-1, 0)]

- 2 b,,f sf'(s, 0) ds
E:_

= 2[<y*(aa), V(aa)> - <y*(aa-1), V(aa-1)>]

2f
a

<Aa(s), V (s)> ds, (5.6.2)
aa_1

where V is the vector field associated with Q and A. = f,(, 0)e, o y is the
"acceleration" of y. (Acceleration, in the sense of second derivatives of co-
ordinate components, is not ordinarily an invariant notion, but in a flat space
when attention is restricted to affine coordinates this acceleration is an (affine)
invariant. We shall not need this fact in the following but a direct proof is
possible; see Problems 5.6.1 and 5.6.2.] When these expressions for E,(0) are
added, the initial terms telescope, leaving only a piece of the first and last,
2[<y*(b), V(b)> - <y*(a), V (a)>], which vanishes due to the fact that V(b) = 0
and V(a) = 0.

Thus y is energy-critical if the sum of the integrals

E'(0) -2
aa

<Aa(s), V(s)> ds
a

vanishes for every choice of vector field V along y such that V(a) = 0 and
V(b) = 0. The advantage of this form of the energy derivative is that the
variation enters infinitesimally, as a vector field. From it we now conclude that
the accelerations Aa of y must vanish identically. For if Aa(c) 54 0 for some a
and c, then we can first choose a vector v at y(c) such that <A5(c), v> = 0, since
b is nondegenerate. Then we extend v to a C°° vector field V1 along y and by
continuity determine a subinterval [cl, c2] of [aa_,, aa] containing con which
<Aa(s), V,(s)> # 0. If we multiply V, by a C °° hump function h which vanishes
outside [c1, c2] [see Example (b) in 1.5] we obtain a suitable infinitesimal varia-
tion V = hV, for which only one of the integrals is nonzero, and its integrand
<Aa, V> = h<Aa, V,> does not change sign. But then the integral cannot
vanish, which is a contradiction.

Thus for y to be energy-critical it is necessary that the accelerations Aa all
vanish identically. But the affine coordinate components of A. are the second
derivatives f,( , 0) of the components 0) = x` o y of y. Hence an energy-
critical curve must have linear affine components; that is, (x' o y)s = u's + v'
for some constants u' and v'. This holds for every affine coordinate system at
any point of y since such a coordinate system can be included among the n
chosen ones.
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Conversely, if xt o y is a linear function of s for every affine coordinate
system in a covering of y, then the accelerations A. all vanish identically, and
consequently the energy first variation E'(0) is zero.

Corollary 1. In a flat space the velocity field of an energy-critical curve y has
constant point wise energy; that is, <ye, y*> is constant. In particular, an energy-
critical curve which is space-like, light-like, or time-like at one point remains so
at all points. Finally, in the riemannian case energy-critical curves are para-
metrized proportionally to arc length.

The proofs are trivial.

Corollary 2. In a flat riemannian space an energy-critical curve is length-
critical.

Proof. Let y be an energy-critical curve. By Corollary 1, y is parametrized
proportionally to arc length on an interval [a, b]. If Q is any rectangle with y
as the base curve, we may reparametrize the longitudinal curves proportionally
to arc length without altering y, obtaining a new rectangle Q. Let the lengths
of the longitudinal curves be L(t) and their energies be E(t) (the parameter t
refers to the longitudinal curves yt in Q,). Then since the condition for equality
in (5.3.1) is satisfied, L(t)2 = (b - a)E(t). But E'(0) = 0 since y is energy-
critical, so 2L(0)L'(0) = 0. Thus either L'(0) = 0 for all such Q and y is
length-critical, or L(0) = 0 and y is a constant curve, which is also length-
critical.

Corollary 3. If a curve in a flat space is energy-critical, then any segment of
the curve is energy-critical. Conversely, if a (nonbroken) C°° curve can be sub-
divided into segments which are all energy-critical, then the whole curve is energy-
critical.

This follows from the fact that the vanishing of acceleration with respect
to some coordinate system is a local condition.

Remark. Although flat spaces are themselves very special, Theorem 5.6.1,
its proof, and the corollaries generalize without essential change to all semi-
riemannian spaces. What is lacking at this point is a notion of differentiation of
vector fields to generalize the differentiation performed to get (5.6.1) and
(5.6.2). In particular we need a notion of the intrinsic acceleration of a curve.
Such a notion of differentiation is discussed abstractly without being related
to a metric in the following three sections. Then in Section 5.11 we discuss how
a metric leads naturally to a notion of differentiation with properties adequate
to carry out the generalization of the proof of Theorem 5.6.1. Thus we will
reach the conclusion that a curve is energy-critical if it is a geodesic (Theorem
5.13.1).
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Problem 5.6.1. If x` and y' are overlapping affine coordinate systems for the
metric b, show that 82x'l8y' 8yk = 0 for all i, j, k, so that a, = 8x'l2y' are
constants in every connected component of the intersection of the coordinate
domains. Hence x' = a,y' + b' in such connected components, where aj' and
b' are constants. That is, the coordinate changes are affine also.

Outline. Define Y, = 818y' and Y,r = [82x'°18y' 8y'] 818x'`. Show that
Yk< Y,, Y;) _ < Y,k, Y,> + < Y,, Yjk> = 0 and hence that the quantities
T,lk = <Y1, Y;k> are skew-symmetric in i and j, symmetric in j and k. From
Problem 2.17.1, T,;k = 0. Since the Y, are a basis Yak = 0.

Problem 5.6.2. Prove that the acceleration field A. of y is independent of the
affine coordinates used (so the subscript a may be dropped).

Problem 5.6.3. Prove the converse of Corollary 2-that a length-critical curve
is energy-critical and hence linear in terms of affine coordinates. (To obtain
differentiability of the length function on longitudinal curves, assume that the
velocity field never vanishes. Reparametrize with respect to arc length and then
follow the pattern of proof as in Theorem 5.6.1.)

An infinitesimal variation V along a non-light-like energy-critical curve y
may be split into two components TV and 1 V, where TV is tangent to y and
1 V is perpendicular to y. The tangential part TV indicates a tendency to re-
parametrize y, but not to change its range. The change in energy due to such a
tangential variation TV is indicated by E"(0), where E(t) is the energy of the
longitudinal curve y, of a rectangle attached to TV. This part of the second
energy variation will be found to have the same sign as <y,,, y,>. The second
derivative of energy for the rectangles attached to the other part 1 V is more
informative about the geometry neighboring y, so it pays to study the second
variation of normal variations, as such second derivatives are called. In Lorentz
manifolds (hence in relativity theory) it can be shown that the time-like
geodesics, the so-called world lines, have negative second normal variations,
and hence these curves maximize energy with respect to normal variations. We
shall not carry this topic further except to give a special case as the following
problem.

Problem 5.6.4. Show that the time-like straight line segments in Minkowski
space are energy-maximizing for normal variations.

5.7. Affine Connexions
It is possible to introduce an invariant type of differentiation on a manifold
called covariant differentiation, and when this is done the manifold is said to
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have an affine connexion or to be affinely connected. An affine connexion can be
obtained quite naturally from a semi-riemannian structure (see Section 5.11),
or from other special structures such as a parallelization (see Problem 5.7 3)
or an atlas of affinely related coordinates (see Problem 5.7.5). Sometimes it is
convenient to choose an affine connexion to use as a tool. However, there is no
unique affine connexion on a manifold.

Affine connexions arose historically as an abstraction of the structure
of a riemannian space. The name may be due to the idea that nearby
tangent spaces are connected together by linear transformations, so that dif-
ferences between vectors in different spaces may be formed and the limit of
difference quotients taken to give derivatives. Originally the operation of
covariant differentiation was conceived of as a modification of partial dif-
ferentiation by adding in corrective terms to make the result invariant under
change of coordinates. We prefer to introduce affine connexions axiomatically
in a somewhat broader context than is done classically. This additional
generality is required to make covariant derivatives of vector fields along curves
sensible. A preliminary discussion of vector fields over maps follows. A vector
field along a curve (see Section 5.5) is the special case in which the map is a
curve.

Suppose µ: N--- M is a C'° map of a manifold N into a manifold M. A
vector field X over µ is a C`° map X: N - TM such that for every n E N,
X(n) E An ordinary C'' vector field on an open subset E of M is then a
vector field over the inclusion map is E--. M. In most of that which follows,
the classical notions can be obtained by specializing µ to the identity map
i:M-M.

We single out two special cases of vector fields over a map µ: N -* M.
(a) The restriction of a rector field X on M to µ is the composition of the

maps µ: N -* M and X: M - TM and is thus denoted X o µ.
(b) The image of a rector field Y on N under µ is denoted µ* Y and defined

by (µ* Y)(n) = µ*( Y(n)).
It follows that vector fields Yon N and X on Al are s.-related iffµ* Y = X - µ.
The vector fields over µ can be added to each other and multiplied by C"

functions on N in the usual pointwise fashion. That is, if X and Y are vector
fields over w and f: N--* R, then (X + Y)(n) = X(n) + Y(n) and (fX)(n) _
f(n)X(-).

If X1, . ., X, is a local basis of vector fields in a neighborhood U - Al (for
example, the X, could be coordinate vector fields c);), then for every vector field
Y over µ and every n such that µn c U we may write Y(n) = f'(n)X;(µn) This
defines d real-valued functions f on j 'U It is easily seen that the f' are C',
for if {w'} is the dual basis of 1-forms on U, then f' = w' o Y, which is a com-
position of the C'° maps Y: N-> TM and w': TU --* R. Hence an arbitrary
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vector field over ix has the local form Y = f'X, o µ. Thus the restrictions to µ
of a local basis of vector fields on M gives a local basis of vector fields over µ,
where the components are C`° real-valued functions on N. Henceforth we shall
handle local questions in terms of a local basis {X,} of vector fields over µ
without assuming that these X, are obtained by restriction from a local basis on
M as above, but the method of restriction remains the principal way of
obtaining such local bases over it.

An affine connexion D on µ: N-* M is an object which assigns to each
t e N. an operator D, which maps vector fields over µ into Ma,, and satisfies
the following axioms.t We require them to be valid for all t, v e N,,, X, Y vector
fields over µ, C`° functions f: N --± R, a, b a R, and C W vector fields Z on N.

(1) Linearity in t: aD,X +
(2) Linearity over R of D,: Dt(aX + bY) = aD,X + bD,Y.
(3) D, is a derivation: D,(fX) = (tf)X(n) + (fn)D,X.
(4) Smoothness: The vector field DZX over µ defined by (DZX)(n) =

DZ(,,)X is C°°.

The value D,X is called the covariant derivative of X with respect to t.
An affine connexion on M is an affine connexion on the identity map

i:M -- M.
Since we shall deal only with affine connexions, we shall refer to them

simply as "connexions."
The covariant derivative operator D, is local in the following sense. If X and

Y are vector fields over µ such that X = Y on some neighborhood U of n = 7rt,
then D,X = D, Y. Indeed, let f be a C m function which is 0 on a smaller
neighborhood V of n and I outside of U. Then f (X - Y) = X - Y since
X - Y = 0 on U, so that

D,X - D,Y = D,(X - Y)
= D,f.(X - Y)
= (tf).(X - Y)(n) + (fn) D,(X - Y)
= 0.

As a consequence we may define the restriction of a connexion D to an open
submanifold U of N: If X is a vector field over µl u and t e U,,, then we take a
smaller neighborhood V of n such that XI,, has a C°° extension X' to N and
define D,X = D,X'. This is independent of the choice of extension X' by the
fact we have just proved. We do not distinguish notationally between D and
its restriction to U.

t In more sophisticated modern notation D is a connexion on the vector bundle over N
induced by TM and µ. Moreover, vector fields over µ are cross sections of that vector
bundle.
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If X,, ..., Xd is a local basis of the vector fields over µ and Z,, . . ., Z, is a
local basis of vector fields on N, all defined on U c N, then we define the
coefficients of the connexion D with respect to the local bases {X,, Z} to be the
d2e functions r1, defined on U by

Dz" Xf = F) Xt.

If Y is a vector field over ,a and Y = f'X, is its local expression, then for
t= a"Z"(n) e N,,, n e U we have

Dt Y = Dt(f'Xf)
= (tf')Xf(n) + (f'n)DtX,
_ [a"Z(n)ft9Xt(n) + (f'n)a"Dz"(n)X,
= a"[Z"(n)f' + (f'n)(fi"n)]X,(n)

Here we have used i and j as summation indices running through 1, ..., d and
a as a summation index running through 1, ..., e. Thus D is determined locally
by its C- coefficients F.

For t e N,t we also define the coefficients of Dt to be the numbers P1, defined
by D,X, = I'1,X,(n). With the notation above we have I'1t = a"I;"n and
D,(f'XJ) = [if' + (f'n)I'1t]X,(n). The map w1: t -+ qt is a linear map
w1: Nrt -* R for each n E N, and is thus a 1-form bn N. The 1-forms w1 are
called the connexion forms with respect to the basis {X,}. The matrix (w1(t))
measures the "rate of change" of the basis {X,} with respect to the vector t.
Their use is the device favored by the geometer E. Cartan. We can rewrite the
formula for covariant differentiation in terms of them as

DzX = (Zwi(X) + w'(X)wi(Z)]XX

since w'(X) are the components of X.

Problem 5.7.1. Find the law of change for the coefficients of D. That is, if
Y, = g; Xf and W. = haOZO are new local bases over µ and on N, respectively,
determine how the coefficients of D with respect to {X,, Z"} are related to the
coefficients of D with respect to { Y1, W"}. In particular, in the case of a con-
nexion on M, Z, = X,, and W, = Y,, show that the coefficients I'1k are not
the components of a tensor.

Problem 5.7.2. Let N be covered by open sets U having local bases { X;, Z.1
and C `° functions I';" which satisfy the law of change required for Problem
5.7.1. Prove that there is a connexion having these functions as its coefficients.

Let D be a connexion on M and µ: N -- M be a C m map. If Xis a C' vector
field on M and t c N. we define

(W*D)e(X ° µ) = D,,., X. (5.7.1)
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This does not define a connexion µ*D on µ completely, since not every vector
field over a is a restriction X -,u. However, the restriction vector fields are
basic in that a connexion is determined by (5.7.1), the connexion µ*D on µ
induced by D.

Theorem 5.7.1. If D is a connexion on M and µ: N -*M is a C- map, then
there is a unique connexion p* D on µ such that for every vector field X on M and
every t e N we have (µ*D),(X o µ) = D,, X.

Proof. Uniqueness. Let Y be any vector field over µ and {X1...., Xd} a local
basis of vector fields on U M. Then Y = f'X; o µ, and for t e N it follows
that we must have (µ*D),Y = (tf')X;(µn) + (fn)D,,. X;. This shows that µ*D
is uniquely determined and gives us a local formula for it.

Existence. We must show that the formula for (j z* D), Y is consistent. If { Y,}
were another local basis, then we would have X, = g; Y, and Y = f'(g; o p) Y, o µ.
The other determination of (µ*D)tY would then be

t Ef'(gi o µ)] Y,(µn) + (f'n)(8'Wn) Du.e Y,
= (tf')(giµn)Y,(tin) + (f'n)t(g1j o µ)Y,(µn) + (.f'n)(gipn)D,,.,Y,
= (tf')X;(,n) +f'n((tL*t)g(. Y,([,n) + (gllM)Du.,Y,]
= (tf')XX(µn) + (fn)Du.e(gf Y,)
= (tf')X;(t n) + U'n)Du.1Xj.

Thus the two determinations of (µ*D),Y coincide.

Remark. More generally, we can induce a connexion tL*D on p o µ: P --> M
from a connexion D on p: N - M and a C `° map p: P -+ N. The procedure
is essentially the same as above, which is the case where N = M and c is the
identity map. The defining property (5.7.1) plus the axioms for a connexion
determine µ*D.

If D is a connexion on µ: N - M and y: (a, b) -.. N is a curve in N, then we
define the acceleration of the curve -r = µ o y to be A, = (y*D)d/duT*, the
covariant derivative of the velocity T*.

Example. Let M be a parallelizable manifold and {X1, . ., Xd} a paralleliza-
tion of M (see Appendix 3.B). We define the connexion of the parallelization
{X,} to be the connexion D on M such that

Dr(f X,) = (tf')XX(m),

where t a M,,,. Thus the coefficients of D with respect to {X,} are all identically
zero.

More generally, vector fields X1, . ., Xd over µ: N-* M are said to be a
parallelization of µ if {X,(n)} is a basis of M,,,, for every n e N. If such X, exist,
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µ is said to be parallelizable. The connexion D of a parallelization {X,} of µ is
defined by D,(f'X,) _ (tf')X,(n), where t e N,,.

Problem 5.7.3. If {X,} is a parallelization of M and µ: N-*M is a C°° map,
show that {X, o tc} is a parallelization of µ. Moreover, if D is the connexion of
{X,}, then µ*D is the connexion of {X, o µ}.

Problem 5.7.4. If { Y, = gt X;} is another parallelization of µ: N -* M, show
that the connexions of the two parallelizations {X,} and { Y,} are the same if
the g1 are constant on connected components of N.

An affine structure on a manifold M is an atlas such that every chart in the
atlas is affinely related (that is, has constant jacobian matrix) with every other
one in the atlas which it overlaps. A manifold having a distinguished affine
structure is called an affine manifold and the charts which are affinely related to
those of the affine structure are called affine charts. In each affine coordinate
domain the coordinate vector fields form a parallelization of that domain, so
there is an associated connexion on each domain.

Problem 5.7.5. Show that the locally defined connexions of the affine co-
ordinate vector field parallelizations on an affine manifold are the same on
overlapping parts, so there is a unique connexion associated with an affine
structure.

Problem 5.7.6. If D is a connexion on p: N -> M and we have C' maps
c: P --* N and T: Q -- P, show that T*(p*D) = (q) 0 T)* D.

Problem 5.7.7. If the w; are the connexion forms of D on µ: N- M with
respect to the local basis {X,} and c: P --* N is a C' map, show that the con-
nexion forms of p*D with respect to {X, o 9)} are 9)*w;.

5.8. Parallel Translation

Let D be a connexion on µ: N-. M. A vector field E over µ is said to be
parallel at n E N if for every tEN,,,

DIE = 0. (5.8.1)

Since D, is linear in t, it would suffice to require (5.8.1) for only those t running
through a basis of N,,. A vector field E is parallel if E is parallel at every n E N.

Now let {X,} be a local basis over µ, {Z0} a local basis on N, and r", the co-
efficients of D with respect to these local bases. The local expression for E is
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then of the form E = g'X;, where the g' are C°° functions on N. Substituting
Z. for tin (5.8.1) we obtain the local condition for E to be parallel.

DzaE = (Zag`)X, + g`DzaX,,
= (Zag' + g'ria)X,,

so E is parallel if

Zag` + g'ria = 0, i = 1, ..., d, a = 1, ..., e. (5.8.2)

In general there are no solutions to this system of partial differential
equations, and hence usually no parallel fields. The integrability condition,
that is, the condition under which there will be local bases of parallel fields, is
that the "curvature tensor" of D vanish (see Theorem 5.10.3). This condition
is satisfied, in particular, for the natural connexion of an affine manifold,
because in this case we may choose the affine coordinate vector fields {8j as
the local basis over is M--± M. This makes the 17,1a = 0 and hence any con-
stants are solutions for the g' in (5.8.2).

Example. Consider the circle S' c R2, as a one-dimensional manifold. It has
a standard parallelization X, the counterclockwise unit vector field, which is
locally expressible in terms of any determination of the angular coordinate 0
as X = d/dO. Define a connexion D on S1 by specifying that D,X = X. (If X
is regarded as the basis, this is the same as setting I'il = 1.) If E were a parallel
field on S', then we would have E = fX for some function f on S'. The
equation D,E = 0 gives Xf + f = 0, which locally has solutions f = Ae-B,
where A is constant. This solution does not have period 2ir in 0, so there can
be no global parallel field for the connexion D. If we omit any point of S',
there is a parallel field on the remaining open submanifold. (See Problem 5.8.4
for a complete analysis of the connexions on S'.)

Proposition 5.8.1. Consider a connexion on µ: N -* M.

(a) If N is connected, a parallel field is determined by its value at a single
point.

(b) The set of parallel fields P forms a finite-dimensional vector space of
dimension p 5 d.

(c) The set of values {E(n) I E is a parallel field} at any n e N is a p-dimensional
subspace P(n) of M,,,,.

Proof. (a) Fix no a N and suppose that E is a parallel field. Then for any
other point n c N there is a curve y from no to n. Let yt = f°Za o y be the local
expression for y,, and E = g'X, that of E. If we restrict (5.8.2) to points of y
(by composing it with y), multiply by f', and sum on a, we obtain

0 =f[Zag, + g'ria} °Y

_ (g, - Y) + f a(rJa ° Y)g' ° Y.
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These equations are a system of linear first-order ordinary differential equa-
tions for the functions g' o y, having C`° coefficients faF a o y. As such, they
have a unique solution corresponding to a given set of initial values g'(no),
and hence to a given value E(no). Thus the values of E along y, and, in
particular, the value at n, are determined by the value at n0 and the fact that E
is parallel.

(b) and (c) It is clear that the sum of two solutions E1, E2 to (5.8.1) is again
a solution, and also that a constant scalar multiple of a solution is again a
solution. Thus the set of parallel fields forms a vector space. But for any
n e N the evaluation map e(n): E -- E(n), taking P onto P(n) c M,,,,, is clearly
linear and by (a) it is 1-1. 1

In the proof above we have seen that the evaluation map e(n): P->- P(n) is
an isomorphism from the vector space of parallel fields to the space of their
values at n. For two points n1, n2 E N the composition

1r(n1, n2) = e(n2) o e(n1)-1: P(n1) - P(n2)

is called parallel translation from n1 to n2. Several properties of parallel trans-
lation are immediate from the definition:

(a) IT(n, n) is the identity on P(n).
(b) 701, n2) is a vector space isomorphism of P(n1) onto P(n2).
(c) ii(n2, n3) o 77(n1, n2) = n(nl, n3)
(d) nr(n1, n2) -1 = '02, n1).

In the case of the ordinary affine structure on Rd, given by the atlas consist-
ing of only the cartesian coordinate system, the parallel translation of the
associated connexion is the familiar parallel translation of vectors in Rd. That
is, P(n) = Rn for every n and in terms of the cartesian coordinate vector fields
bt parallel translation leaves components constant:

1r(n1, n2)(a`8j(n1)) = a'l,(n2)

We now examine the effect on parallel translation of passing to an induced
connexion. Briefly what happens is that parallel translation can be applied to
more vectors at fewer points.

Proposition 5.8.2. Let S be the space of parallel fields of a connexion D on
j: N ->- M, let q): P --* N be a C' map, and let Q be the space of parallel fields
of the induced connexion (p* D.

(a) IfEES,then EogeQ.
(b) For every p e P, S(9)p) is a subspace of Q(p).
(c) If 9) is a diffeomorphism, then S((pp) = Q(p) for every p e P.
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Proof. Suppose E e S. By (5.7.1), if t e P then (pv*D),(E o P) = Dm,,E = 0,
since E is parallel. Hence E o ' is parallel, which proves (a). Now (b) is trivial.

If we apply Problem 5.7.6 to the case where T then (c) follows
immediately from (b). I

The extreme case is that of a connexion for which parallel translation applies
to all tangents. We call such a connexion parallelizable, since a basis {E,} of P
will be a parallelization of µ. This is somewhat stronger than the satisfaction
of the integrability condition (vanishing curvature), except when N is simply
connected.

Many properties of connexions can be studied by restricting attention to
curves, so the following proposition, which shows that a connexion on a curve
is particularly simple, has many uses when applied to induced connexions on
curves.

Proposition 5.8.3. A connexion on a curve is parallelizable.

Proof. If D is a connexion on y: (a, b) --* M, then the equations for a parallel
field E = g' X, in terms of a local basis {X,} over y, the basis d/du on (a, b), and
the coefficients r; = r;, of D are a system of linear ordinary differential
equations:

4

T + gjri = 0.

Hence, choosing an initial point c c (a, b), there is a solution on an interval
about c for any specification of initial values g`(c), that is, for any given value
of E(c). These local solutions may then be extended to all of (a, b) by the usual
patching-together method.

When we apply parallel translation with respect to an induced connexion
y*D for a curve y: (a, b) - N and a connexion D on µ: N -i- M we say that
we have parallel translated vectors along y with respect to D. Thus parallel
translation along y gives a linear isomorphism ,r(y; c, d): M,,,, --. Md for
every c,d c (a, b). A parallelization {E,} for y*D is called a parallel basis field
along y (for D). It should be clear that unless D is parallelizable the parallel
translation from yc to yd depends on the curve y as well as the endpoints in
question. However, Proposition 5.8.2(c) shows that the parametrization of the
curve is irrelevant. Specifically, if T = y -f is a reparametrization of y, then
n(r; c', d') = Tr(y;.fc',.fd').

Problem 5.8.1. For any connexion D on µ: N-i- M show that for a given
point n e N there is a local basis {X,} of vector fields over µ such that each X,
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is parallel at n. Hence for I E N. and any vector field X = fiX over µ,
D,X = (tft)X,(n).

Problem 5.8.2. For any connexion D on µ: N -->- M and vector t E N,,, if we
choose a curve y in N such that y*(0) = t, then we may describe the operator
Dt as follows. Let {E,} be a parallel basis field along y. Then for any vector
field X over µ we may express X along y in terms of the E,, that is, X a y = f E,
where the ft are real-valued functions of the parameter of y. Show that
D,X = ft'(0)E,(0).

Problem 5.8.3. Let X be the unit field on S', as in the example above. For any
given constant c define a connexion `D on S' by specifying that °DxX = cX.
(The connexion in the example is 'D; the connexion of the parallelization X
is °D.)

(a) Show that there is no global parallel field for `D unless c = 0.
(b) Show that `D is the connexion associated with an affine structure on S'.
(c) If D is any connexion on S', then there is a constant c and a dif-

feomorphism µ: S' -* S' such that D = µ*°D. (Hint: Determine c by the
amount that a vector "grows" when it is parallel translated once around Si.
Then define µ by matching corresponding points on integral curves of certain
parallel fields.)

Thus we can give a classification, up to equivalence under a diffeomorphism,
of all the connexions on a circle. If the diffeomorphism is allowed to be
orientation-reversing, then we may take c >_ 0.

Problem 5.8.4. Show that a connexion on R is equivalent, up to diffeo-
morphism, to one of three specific connexions, according to whether a parallel
field is (1) complete, (2) has an integral curve extending to co in only one
direction, or (3) has an integral curve which cannot be extended to co in either
direction.

5.9. Covariant Differentiation of Tensor Fields

If µ: N -- M is a C `° map, we may define tensor fields over µ, in analogy with
vector fields over µ, as functions which assign to a point n c N a tensor over
the vector space M,,,,. If {Xj is a local basis of vector fields over µ, then the dual
basis {wi} consists of the 1-forms over µ dual to the X, at each n c the domain
U of the X,; that is, for each n c U the value of w' is a cotangent w'(n) e M,,,,*
and {w'(n)} is the basis of M,,,,* dual to the basis {X,(n)} of Then the various
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tensor products of the X; and the w' form local bases for tensors over µ. Thus
a tensor field of type (I, I) over µ can be written locally as f,X, ® w', where
the components f; are C'° functions on U.

Now if D is a connexion on It and {X,} is parallel at n with respect to D, then
we define the dual basis {w'} to be parallel at n also. Covariant differentiation
of tensor fields over µ can then be defined as an extension of the result of
Problem 5.8.1: If t e Nn, then D, operates on tensor fields by letting t operate
on the components with respect to the basis {X,} which is parallel at n Thus
D,(f'X, 0 w') = (tf,')X;(n) ® w'(n). Of course, it must be verified that if a
different parallel basis at n is used, then the resulting operator D, is still the
same

Alternatively, covariant differentiation of tensor fields over p. can be defined
by generalizing the technique of restricting to a curve and using a paralleliia-
tion along the curve, as in Problem 5.8.2 Thus if {E,} is a parallel basis along
a curve y and {e'} is the dual basis, for any tensor field S over µ we can express
the restriction S.' y in terms of tensor products of the E,'s and e''s. If t =
y*(0), then D,(/,'E, ® e') = f,"(0)E,(0) ® e'(0) Again, this can he shown to be
independent of the choice of curve and parallel basis and furthermore coincides
with the definition in terms of a basis which is parallel at just one point. We
shall leave the necessary justifications which show that D, is well defined on
tensor fields as exercises.

Problem 5.9.1. Show that the identity transformation, whose components as
a tensor of type (l, I) are 8', is parallel with respect to every connexion.

The following proposition lists some automatic consequences of the defini-
tion of covariant differentiation of tensor fields.

Proposition 5.9.1. (a) If S and T are tensor fields of er µ of the same type, then
Dt(S + T) = DtS + D,T.

(b) For a real-valued function f on N, D,(fS) = (tf)S(n) + (fn) D,S.
(c) For tensor fields S and 7' over µ, not necessarily of the same type,

Dt(S (9 T) = D,S ® T(n) + S(n) 0 D,T.
(d) Cotariant differentiation commutes it ith contractions. That is, if C is the

operation of contracting a tensor S, then C(D,S) = D1(CS).
(e) D, is linear in 1: DQ,, = aDt + bD,

I f Z is a vector field on N and S is a tensor field over µ, then DZS is the tensor
field over u, of the same type as S, defined by (D,S)(n) = Dz(,)S

The formulas for covariant differentiation in terms of a local basis are
developed next. Since we already have a notation for D,X,. ";,X, = w;(t)X,,
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it suffices to obtain the formula for Dew' and apply the rules of Proposition
5.9.1. However, by Problem 5.9.1, X, ® w' is parallel, so by (c),

0 = Dt(X,'(& w')
= I'1eX,(n) ® wj(n) + X,(n) ® Dtw'

= X,(n) ® [riew'(n) + Dt','].

Since the X,(n) are linearly independent,

Dew' _ - FJtw.j(n)

The expression in terms of a local basis {Za} on N is an immediate specializa-
tion:

Dzaw' =

We illustrate the local formula for covariant differentiation of a tensor field
of type (1, 3). Let

S= SjhkXX®w'®Wh®Wk.

Then by (repeated applications of the rules of Proposition 5.9.1,

DzaS = (ZaSjhk)Xt ®w' ®W® ® Wk + SjhkrtaXp ®wj (9 Wh((9 Wk
+ S}hkXX 0 (-I'DaW") ®wh ®wk + S`hk Xt ®Wj ®(-l' aW') ®Wk
+ S}hk X® ® w' (& W® ®(-rk.WP)

= (ZaSjhk + Sjhkrpa - Sphkr a - Spkryyha

- Sjhprka)X® ® W' O Wh ® Wk.

The components

Shkla = ZaSjhk +pp S1hkrpa - SPhkria
- Sipkrha - Sjhprka

define a "tensor-valued l-form" on N. If {4a) is the dual basis to {Za}, we may
write it

DS = DzaS ® Ca.

For each n e N, DS is a linear function on N. with values in T'Ma,,: t e N --*
DtS e T3M,,,,. We call DS the covariant differential of S.

In the case where D is a connexion on M, so N = M, µ = the identity, and
we may take Z, = X, C' = we, the covariant differential becomes a tensor
having covariant degree greater by 1. Thus if S is of type (1, 3), then DS is of
type (1, 4). As a multilinear function we can give the following intrinsic
formula for DS:

DS(T, w, x, y, z) = D=S(T, w, x, y),

where T CMn,* and w, x, y, z e M,,.
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5.10. Curvature and Torsion Tensors

Let D be a connexion on µ: N-* M. For every pair of tangent vectors
x, y c- N,,, a tangent vector T(x, y) e M,,,, may be assigned, called the torsion
translation for the pair x, y. The definition is as follows. Let X, Y be extensions
of x, y to vector fields on N. Then

T(x, y) = D.(µ* Y) - X) - p* [X, Y](n).

To show that we have really defined something, we must show that this
depends only on x and y and not on the choice of X and Y. In doing this a
local expression for T is also obtained. Let {X,} be a local basis over µ at n,
let {w1} be the dual basis, and w; the connexion forms for this local basis, so
for any t c N,,, m,(t) = 1';,; that is, D,XJ = w4(t)X,(n). Then we have for any
vector field Z over µ, Z = w'(Z)X,. Applying this to µ*X, µ* Y, and µ*[X, Y]
we get

D,(fL* Y) = Dx(wt(N2* Y)X1)
= (xw'(N*Y))XX(n) + w'(µ*Y)D.X1
_ [xw'(t.i* Y) + w'(µ*Y)w',(x)]X (n),

Dv(l4*X) _ [Yw'(fi*X) + w'(t,*x)wi(y)]X,(n),
µ*[X, Y] = w'(i,*[X, Y])X .

Combining these three we obtain

T(x, y) = {xw'(µ*Y) -Yw'(,-*X) - w'(p*[X, Y](n))
+ wj(x)w'(µ*Y) - wi(Y)wr(Fi*x)}X'(n). (5.10.1)

Now we note that we can definet 1-forms µ*w' on N by the formula (µ*w')(z) _
w'(µ*z) for any z c TN. The first three terms in the braces of (5.10.1) then
become, by (c), Section 4.3, 2 dµ*w'(x, y). It is thus independent of the choice
of X and Y. The remaining two terms are 2w; A µ*w'(x, y), so we have reduced
the formula for T to

T(x, y) = 2(dµ*w` + w; A µ*w')(x, y)X,(n).

The 2-forms on N,

Q' = 2(dµ*w' + wi. A Ir*w'), (5.10.2)

are called the torsion forms of the connexion D, and the equations (5.10.2)
which we have used to define them are called the first structural equations (of
E. Cartan). The torsion T itself is thus a vector-valued 2-form which may be
denoted by

T = X, ®S2. (5.10.3)

t Since the w' are not forms on M, the previous definition for pulling back forms via µ does
not have meaning here.
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In the case where X, = t9, o µ, where the 8, are coordinate vector fields on M,
w' = dx' o p and µ*w' = µ* dx' in the sense we have previously defined
for,u*. (See Proposition 3.9.4. The "o ,u" attached to dx' is merely a means of
restricting the domain of dx' to IAN, and this restriction is already included in
the operator µ*.) Hence dµ*w' = µ* dax' = 0, so the formula for 1? becomes

II' = 2w A µ* dx1. (5.10.4)

Finally, if µ is the identity on M, then T becomes a tensor of type (1, 2) on M
which is skew-symmetric in the covariant variables. The connexion forms are
w; = rik dxk and the local expressions for the components of T are classically
given as

Tik = rk1 - rjk. (5.10.5)

These follow immediately from (5.10.3), which can be expanded using (5.10.5)
to give

T = X, ® 2(l1k dxk A dx1)

= Xt ® (rk1 - r,k) dX' A dxk.

A connexion for which T = 0 is said to be symmetric. The name is suggested
by the fact that I'J'k is symmetric in j and k, or, more generally, from the fact
that when X and Y are vector fields over µ such that [X, Y] = 0, their co-
variant derivatives have the symmetry property

Dxtk* Y = Dy,h* X.

Problem 5.10.1. If D is a connexion on M, then the conjugate connexion D*
is defined by

D*xY = DxY + T(X, Y), (5.10.6)

where T is the torsion of D. Show that D* is actually a connexion on M and
that the torsion of D* is -T.

Problem 5.10.2. If D and E are connexions on µ: N -> M and f is a function
on N into R, show that fD + (1 - f )E is a connexion on µ. [if t e N,,, then
(fD + [I - f]E), = f(n)D, + (I - f(n))E,.] We call fD + (I - f)E the
weighted mean of D and E with weights f and I - f.

Problem 5.10.3. If D is a connexion on M, show that SD = M(D + D*) is
symmetric and find its coefficients with respect to a coordinate basis in terms
of the coefficients of D. The connexion SD is called the symmetrization of D.

Again turning to a connexion D on µ: N -* M, for every pair of tangents
x,y e N. a linear transformation R(x, y): M,,,, --> M,,,, may be defined, called
the curvature transformation of D for the pair x, y. The curvature transforma-
tion will give a measure of the amount by which covariant differentiation fails



§5.10] Curvature and Torsion Tensors 233

to be commutative. With extensions X and Y of x and y, as above, the
definition is '

R(x, y) = D[x.Yxn) - DxDY +

That is, if w c M, and W is any vector field over µ such that W(n) = w, then

R(x, y)w = D[x,yl(.) W - DXDYW + (5.10.7)

As with torsion, we show that this is independent of the choice of extensions
X, Y, and W and simultaneously develop an expression for R in terms of the
connexion forms. This time we shall not carry along the evaluation at n, but
the tensor character will still become evident.

Taking the terms in order we have

D[x.Y]W = D[x.Y]{w'(W)Xt}
= {[X, Y]-'(W) + cb'(W)a4[X, Y]}Xs,

DXDYW = DX({Yw'(W) + w'(W)wJ(Y)}X,)
= (X{Yw'(W) + w'(W)wJ(Y)})XX

+ {Ywk(W) + w'(W)w!(Y)}wk(X)X,
= {XYw'(W) + wk(Y)Xwk(W) + w'(W)Xwi(Y)

+ wk(X)Ywk(W) + w'(W)wk(X)wl(Y)}Xt,

and DYDXW is the same except for a reversal of X and Y. In the combination
for R(X, Y)W, the terms in which the w'(W)'s are differentiated by X, Y, or
both, cancel. Thus R(X, Y) W is linear in W and depends only on the point-
wise values. The remaining terms are

R(X, Y)W = {-4[X, Y] - XcuJ(Y) + YwJ(X)
wk(X)wJ(Y) + wk(Y)wl(X)}w'(W)X,

= 2{-dw'(X, Y) - wk A wj(X, Y)}w'(W)XX.

The 2-forms on N,

S2J = 2(d-j' + wk A wj) (5.10.8)

are called the curvature forms of D, and the equations (5.10.8) are the second
structural equations (of E. Cartan). The curvature itself is thus a tensor-valued
2-form of type (1, 1) which we may write

R= -Xi®w'0Qj'. (5.10.9)

It can be shown that R(x, y) gives a measure of the amount a tangent vector
w, after parallel translation around a small closed curve y in a two-dimensional
surface tangent to x and y, deviates from w. In fact, the result of parallel trans-
lation of w around y gives the vector w + aR(x, y)w as a first approximation,
where a is the ratio of the area enclosed by y to the area of the parallelogram
of sides x and y.
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The reduction to the classical coordinate formula in the case µ = the
identity and X; = a, follows by letting Wj = r k dxk in (5.10.8), computing,
and substituting in (5.10.9):

dw = (ahr;k) dxh A dxk

= 12 \ahrik - akrlh) dXh ® dXk,
wD A WI = Z(F hrDk - rvkr,h) dX" ® dXk.

Thus the components of R, as a tensor of type (1, 3) on M, are

R7hk = akrlh - ahrik + rDkr)h - r,hrlk (5.10.10)

Problem 5.10.4. For a connexion on M, derive (5.10.10) directly from
(5.10.7) as the components of R(ah, ak)al.

For a connexion on M the curvature tensor (5.10.9) is, as always, skew-
symmetric in the last two variables. It makes sense to ask if it is skew-sym-
metric in the last three variables, but this guess fails completely. In fact, if the
connexion is symmetric (T = 0), then the skew-symmetric part of R vanishes,
a fact which may be called the cyclic sum identity of the curvature tensor. In
explicit form this identity may be written

R(X, Y)Z + R(Y, Z) X + R(Z, X) Y = 0,
or

R7hk + Rkk7 + Rk)h = 0. (5.10.11)

Problem 5.10.5. Show that (5.10.11) is equivalent to the vanishing of the
skew-symmetric part of R.

The first Bianchi identity generalizes to the case of a symmetric connexion
on a map p: N --> M as follows. By pulling back the covariant part of R to N
we obtain a vector-valued tensor µ*R of type (0, 3) on N. Specifically, we have

µ*R(X, Y, Z) = R(X, Y)µ*Z,

where X, Y, Z are vector fields on N. Equivalently, in terms of a local basis

µ*R = -X, ®µ*WI ®L;

If we apply the alternating operator d, we get the skew-symmetric part, and
since S2; is already a 2-form, it is

.sa1µ*R = -Xi ® µ*Wj A S2j.

Theorem 5.10.1 (The cyclic sum identity). If torsion vanishes, then µ*w& A
S2 = 0; hence Vµ*R = 0.
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Proof. If S2' = 0 the first structural equation says dµ*w' _ -o4 A µ*w'.
Taking the exterior derivative and substituting the second structural equation,
dw; = -wk A wj + -}S1,' yields

d2µ*w' = 0
-dwtf n µ*w' + w; A dµ*w'

= wk A wk A j 1l A µ*wf - wj A o4 A µ*wk

_ -40'1 A µ*w'
_ -#µ*w' A Uj'.

Problem 5.10.6. The Ricci tensor R,jdx' ®dx' of a connexion D on a
manifold is the tensor of type (0, 2) obtained by contracting the curvature as
follows: R,r = R1;. If D is symmetric use (5.10.11) to show that R,, - R, _
Rh,,, so there is only one independent contraction of R.

Problem 5.10.7. (a) Let D be a symmetric connexion on a manifold M. Use
coordinates x' such that the 2, are parallel at m [hence Pk(m) = 0 and co-
variant derivatives at m coincide with derivatives of components] and (5.10.10)
to prove the Bianchi identity:

R1hklP + R)kylh + RJPhlk = 0-

(b) Interpret DR, the covariant differential of the curvature tensor R, as a
tensor of type (0, 3) whose values are tensors of type (1, 1), that is, DR (x, y, z) =
(D,R)(x, y): M. - M. for x,y,z e M.. Show that the Bianchi identity is
equivalent to the fact that the skew-symmetric part of DR vanishes.

Problem 5.10.8. Show that all possible contractions of DR can be obtained
from D(R;,dx' ® dx1), owing to the following consequence of the Bianchi
identity:

Rtlklh = Rtkli - R1)Ik

The fact that torsion and curvature behave well under the process of induc-
ing one connexion from another is often used but rarely proved. If p: P -+ N
is a C °° map and D is a connexion on µ: N -- M with torsion T and curvature
R, then we define the pullbacks of T and R to P by

cp*T(X, Y) = T(T*X, -p* Y),
1 *R(X, Y) = R(9,*X, 9,* Y).

Thus t*T and p*R are tensor-valued 2-forms on P with values in TM and
TIM, respectively.
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Theorem 5.10.2. The induced connexion 9D has torsion and curvature p*T
and p* R.

Proof. These are easy consequences of the structural equations and the fact
that the connexion forms of the induced connexion are the pullbacks by P of
the connexion forms of D (see Problem 5.7.7).

Corollary. An induced connexion of a symmetric connexion is symmetric.

A connexion is called flat if R = 0. If the connexion is locally parallelizable,
then it is flat. For if there is a local basis of parallel fields {E,}, then

R(X, Y)E, = D1X,Y,E, - DXDYE, + DYDXEi
0

for any vector fields X, Y. Since the {E,} are a basis R(X, Y) = 0. The con-
verse is true (see below), so R = 0 is the integrability condition for the
equations for parallel fields.

Theorem 5.10.3. If R = 0, then the connexion is locally parallelizable. If in
addition N is simply connected, then the connexion is parallelizable.

Proof. At no e N choose coordinates z" on U c N with no as the origin and
choose a basis {e,} of Parallel translate {e,} along "rays" from no with
respect to the coordinates z", generating a local basis {E,} on U. By a ray we mean
a curve p such that z"ps = a" s for some constants a". If Z. = a/az" the velocity
of such a ray is a"Z" o p, so the condition on the E, is

a"Dz"E(9,-1(als, ..., aes)) = 0,

where = (z1, ..., ze) is the coordinate map. The E, are C ' because they can be
represented as solutions of ordinary differential equations dependent on C'°
parameters a1, . . ., ae. (Note that the E, are parallel at no and that the procedure
works without the assumption R = 0.)

Now we use the assumption R = 0 to show that the E, are parallel in all
directions, not just the radial directions. If t e N,,, n e U, z"n = a", and t =
b"Z"(n), then we define a rectangle T having as its longitudinal curves rays from
no, its base curve the ray from no to n, and the final transverse tangent equal to t:

T(u, v) = 9, -1((a + bv)u),

where a = (al, ..., ae) and b = (b'...., he). Then {E, o T) is a local basis for
vector fields over µ o r. Let w', be the connexion forms for the induced connexion
T*D with respect to {E, o T}. The domain of r is an open set in R2 and thus has
local basis X = 0/au and Y = a/av. The fields E, " r are parallel along the
integral curves of X since they correspond to the longitudinal curves of T which
are rays from no in N. Thus

T*DX(E " T) = 0
= wi(X)E, o r,
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and since {E, o r} is a basis,

w{(X) = 0.
The curve r(0, v) = no is constant, so r. Y(0, v) = 0. Hence

r''Dy(o. V)E& o r = 0

[see Problem 5.7.1(b)]; that is, wi(Y(0, v)) = 0. The curvature of vanishes
(Theorem 5.10.2) so the second structural equations reduce to

dwj= -wk A wj.

Applying this to (X, Y),

XwXY) - YwXX) - w''[X, Y] = -2wk A wj"(X, Y)
= 0 (5.10.12)

since wk (X) = wf(X) = 0. Moreover, [X, Y] = 0, so (5.10.12) becomes

XwJI(Y) = 0.

Thus the functions j'(u) = wXY(u, 0)) on (0, 1] satisfy f'(0) = 0 and f" = 0,
which shows that f'(l) = 0. But

D, E, = D,.r(i.o)EE
= T*Dy(l.o)E, o r
= w{(Y(1.0))E,(n)
=0

Hence the E, are parallel at n.
If N is simply connected, then for any n e N choose a curve y such that

y(O) = no, y(1) = n and define E,(n) = ir(y; no, n)e,. (If N is not connected a base
point no must be chosen in each component.) If we can show that E,(n) is inde-
pendent of the choice of y, it will coincide locally with a field of the type defined
above and hence be C- and parallel. Thus to show that {E,} is a well-defined
parallelization for D, it suffices to show that if a is another such curve from no
to n, then rr(a; 0, 1)e, = rr(y; 0, I)e,. However, N is simply connected, so y can be
deformed into a by a rectangle r such that r(u, 0) = y(u), r(u, 1) = a(u), and
r(0, ) and r(l, ) are constant curves. The proof now proceeds as above, but with
X and Y interchanged. The details are left as an exercise. I

Problem 5.10.9. If the MSbius strip M is viewed as a rectangle in R2 with
two opposite edges identified with a twist, show that there is a unique affine.
structure for which the restriction of the cartesian coordinates on R2 is one of
the affine charts. Show further that the connexion of this affine structure is
flat but not parallelizable.

We close this section with a result indicating the desirability of symmetry of
a connexion.

Theorem 5.10.4. Let D be a symmetric connexion on M and let P be a distribu-
tion on M which is spanned locally by parallel fields. Then P is completely inte-
grable and admits coordinate rector fields as a parallel basis.
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P r o o f . Let {E,}, a = 1, ... , p be a local parallel basis for P. Then

T(Ea, E5) = DE,E# - DE,E, - [E Es)
= -[E., Ea)
= 0.

Thus P is completely integrable and the E. themselves are locally coordinate
vector fields. I

Corollary. A connexion D on a manifold M is the connexion associated with an
affine structure iff T and R both vanish.

5.11. Connexion of a Semi-riemannian Structure

The generalization of semi-riemannian structures on manifolds to semi-
riemannian structures on maps is straightforward and will not be defined
explicitly. Our principal interest will be in such a structure b on a manifold M
but if µ: N-- M, then an important tool is the induced semi-riemannian
structure on which is defined as bop, viewing b as a tensor field of type
(0, 2) on M.

A connexion D on a map p.: N --> M is said to be compatible with the metric
< , > on µ if parallel translation along curves in N preserves inner products.
Specifically, if y is any curve in N and x, y E MN,,, then

<'r(y; a, b)x, 'ZT(y; a, b)y> = <x, y>

for all a, b in the domain of V. In particular, ii y; a, b) maps an orthonormal
basis of M,,,, into an orthonormal basis of M,,,b, so there are parallel basis
fields along y which are orthonormal at every point. A number of equivalent
conditions are given below.

Proposition 5.11.1. The following are all equivalent.

(a) Connexion D is compatible with < , >.

(b) The metric tensor field < , > is parallel with respect to D.
(c) For all vector fields X, Y over p, and all t E N,,,

t<X, Y> = <DtX, Y> + <X, DLY>. (5.11.1)

(d) There is an orthonormal parallel basis field along every curve y in N.
(e) For every C °° map yp : P - . N the induced connexion q)* D is compatible

with the induced metric < , > o q.

Proof. We have already noted that (a) implies (d) above, and the reverse
implication (d) --- (a) is a simple exercise in linearity.
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(d) -; (b). We must show that D,< , > = 0 for every t, assuming there is
an orthonormal parallel basis along any curve. Choose a curve y such that
y*(0) = t and let {E,} be such a basis, {e'} the dual basis. Then < , > o y =
b,je' 0 e', where the b,, are 1, -1, or 0. The derivatives of the b,j are all 0, so by
the second version of the definition of the covariant derivative of a tensor
field, D,< , > = 0.

(b) -. (e). This follows from a general rule for covariant derivatives of
restriction tensor fields with respect to an induced connexion: (q,*D),S o P =
D..,S. The general rule follows easily from the special case where S is a vector
field by choosing a basis. Then take S = < , >.

(a) +-+ (e). The definition of compatibility is little more than the case of (e)
where q, is a curve y, so (a) is a special case of (e). On the other hand, a curve T
in P is pushed into a curve y = q, o T in N by q'. If we have (a), then inner
products are preserved under parallel translation along y, and (because we have
essentially the same set of vectors, parallel translation, and metric for those
vectors) parallel translation preserves inner products along T also.

(b) <--> (c). We may view the evaluation (X, Y) - . <X, Y> as a contraction C.
By Proposition 5.9.1, C commutes with D,, from which we derive the value of
D,< > on (X, Y):

(De< , >)(X, Y) = t<X, Y> - <D,X, Y> - <X, DtY>.
The equivalence of (b) and (c) is now immediate.

Problem 5.11.1. Let {F,} be a local orthonormal basis for a metric < ,

over µ: N -i M and let <F,, F1> = a, (no sum), so a, _ ± 1. Show that a con-
nexion D on µ is compatible if the connexion forms of D with respect to such
orthonormal bases satisfy the skew-adjointness property: w; = -a,ajw; (no
sum). In particular, for the riemannian case the matrix (wj) is skew-symmetric.

We mention without proof that there are always compatible connexions with
a metric on a map. Some further restriction is needed to force a unique choice
of compatible connexion. In the case of a metric on a manifold a restriction
which produces uniqueness is given by making the torsion tensor vanish.
Besides the analytic simplicity which symmetry gives to a connexion there is a
geometric reason why the vanishing of torsion is desirable, which may be
roughly explained as follows. Let y be a curve in M and refer the acceleration
A, to a parallel basis field along y: A, = f'E,. Then we can find a curve Tin
Rd such that the acceleration of r in the euclidean sense is T" = (f', , fd)

If T is a closed curve in R', then a surface S "fitting" y can be found such that
the integral of the torsion (a 2-form!) on S approximates the displacement
from the initial to the final point of y. Thus if torsion vanishes the behavior of
short curves can be compared more easily with euclidean curves.
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If we attempt to apply the torsion zero condition in the general case of a
metric on a map p: N -+ M we find that it imposes linear algebraic conditions,
point by point, on the connexion forms (or coefficients). The solvability of the
system is determined by the rank of µ, at the point. That is, if q = dim
d = dim M, then the solution is unique, and if q = e = dim N, then the solu-
tion exists (at the point n). Thus to have both existence and uniqueness µ, must
be 1-1, which means that µ is a local diffeomorphism. It is only slightly more
restrictive to confine our attention to the case where µ is the identity, that is,
to a metric on a manifold.

Theorem 5.11.1. A semi-riemannian manifold has a unique symmetric connexion
compatible with its metric.

Proof. Uniqueness is demonstrated by developing a formula for <Dx Y, Z>,
using compatibility in the form

<DxY, Z> _ Y, DXZ> + X< Y, Z>, (5.11.1)

and torsion zero in the form

DxY = DYX + [X, Y]. (5.11.2)

The procedure is to apply (5.11.1) and (5.11.2) alternately, to cyclic permuta-
tions of X, Y, Z. At the final step a second copy of <DxY, Z> appears, giving
the formula

2<DxY, Z> = X< Y, Z> + Y<X, Z> - Z<X, Y>
- <X, [Y Z]> + <Y, [Z, X]> + <Z, [X, Y]>. (5.11.3)

Call the right side of this formula D(X, Y, Z).
To prove existence we observe:
(a) For fixed X and Y, the expression D(X, Y, Z) is a 1-form in Z. When we

substitute fZ for Z the terms in which f is differentiated cancel, leaving
D(X, YJZ) = fD(X, Y, Z). Additivity in Z is obvious. Thus (5.11.3) does not
overdetermine Dx Y; that is, there is a vector field W such that 2< W, Z> _
D(X, Y, Z) for each X, Y.

(b) Axiom (1) for a connexion, that Dt is linear in t, is similar to (a) and
follows from the fact that D(X, Y, Z) is a 1-form in X for fixed Y and Z.

(c) Axiom (2), that D, is R-linear, follows from the obvious additivity in Y
and axiom (3), which is done next.

(d) Axiom (3) is proved by substituting fY for Y and computing to obtain
the desired result in the form

D(X, fY, Z) = fD(X, Y, Z) + 2(Xf)<Y, Z2.
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(e) It is clear that the formula yields C°° results from C°° data, so axiom (4)
is satisfied.

(f) Compatibility is proved by checking that

D(X, Y, Z) + D(X, Z, Y) = 2X< Y, Z>.

(g) Torsion zero is verified by showing

D(X, Y, Z) - D(Y, X, Z) = 2<[X, Y], Z>. I
We call this compatible symmetric connexion the semi-riemannian connexion,

or, in honor of its discoverer, the Levi-Civita connexion.

Corollary. A semi-riemannian structure < , > o µ induced on µ: N-* M by
a metric < , > on M has a compatible symmetric connexion. It is unique in a
neighborhood of any point at which p* is onto.

Proof. The existence is shown by ti*D, where D is the semi-riemannian con-
nexion on M. If µ* is onto at n, then we can find a local basis over µ consisting
of image vector fields p*Z,, where the Z, are vector fields on N. It follows that
every vector field over µ is an image vector field in the basis neighborhood. But
the development of (5.11.3) can be carried out as before if attention is restricted
to image fields, giving a formula for 2<DXp , Y, tk*Z>, where X, Y, and Z are
vector fields on the neighborhood of n.

Equations (5.11.3) can be specialized to obtain expressions for the co-
efficients of D. In the case of a coordinate basis {ai} the results are classical. The
functions

<De,ai, ak> = [ij, k]

= -(alblk + albtk - akbil), (5.11.4)

where the b,l are the components of < , >, are called the Christoffel symbols of
the first kind. The Christoffel symbols of the second kind are the coefficients of D
as previously defined, the and are also denoted by {lk}. They are obtained
by raising the index k of [ij, k], since Dea, = I';,ak gives [ij, k] = r bhk, and
thus

rh = bhk[lt, k]
= #bhk(aibik + aibik - akbii), (5.11.5)

where (bhk) is the inverse of the matrix (bhk).
Another natural choice of local basis is an orthonormal basis or frame {F,}.

Its use might be more advantageous, for example, in the case of a riemannian
structure on a parallelizable manifold, because in that case the basis can be
made global. For frame members as X, Y, and Z the first three terms of
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(5.11.3) drop out since the <F,, Fj> = a,S,j (no sum) are constant. The co-
efficients of D are given in terms of the structural functions c;k for the frame,
that is, the components of their brackets:

[Fj, Fk] = CikF,. (5.11.6)

Note that c;k = -ckj. Inserting (5.11.6) in (5.11.3) we obtain

2<DF,Fj, Fk> _ -a,Cjk + ajCk, + akc,j
= 2ak1'i (no sums).

In this case to lower the indices, solving for the rj'k, is trivial since (b,j)
(a,8,) is its own inverse:

r}k = }a,(a,c;ij + ajck + akc f) (no sums). (5.11.7)

Theorem 5.11.2. The curvature tensor R of a semi-riemannian manifold has the
following symmetry properties:

(a) <R(X, Y)Z, W> = -<R(Y, X)Z, W>.
(b) <R(X, Y)Z, W> = -<R(X, Y)W, Z>.
(c) <R(X, Y)Z, W> = <R(Z, W)X, Y>.

and the first Bianchi identity
(d) R(X, Y)Z + R(Y, Z) X + R(Z, X)Y = 0.

(See Problem 2.17.4 for the component version of this theorem, where we
use as notation A,jhk = R,jhk = Some further algebraic properties of
the curvature tensor are also noted in Problem 2 17.4.)

Proof. Properties (a) and (d) have already been proved in Section 5.10.
Property (b) says that R(X, Y) is a skew-adjoint linear transformation with

respect to < , >. The corresponding property of the matrix (A) of a linear
transformation with respect to a frame {F,} is A, = -a,a,A; (no sum). That
this property is enjoyed by the connexion form matrix (P;, dxk) = (Cu) is
immediate from (5.11.7). But the matrix of R( , ) is the negative of the cur-
vature form matrix for which skew-adjointness follows from that of
(wij) and the second structural equations t = 2(dw + wk A w; )

The relation (c) follows from (a), (b), and (d), as has been asked for in
Problem 2.17.4. Indeed, if we substitute in the relation

<R(X, Y)Z, W> + <R(Y,Z)X, W> + <R(Z, X)Y, W> = 0

the permutations (X, W, Y, Z), (Z, W, X, Y), and (Y, W, Z, X) of (X, Y, Z' W),
then we obtain three similar relations. The sum of the first two minus the
sum of the last two gives the desired conclusion. I



§5.11) Connexion of a Semi-riemannian Structure 243

Problem 5.11.2. Find the components of the curvature of the semi-riemannian
connexion

(a) with respect to a coordinate basis {8,} in terms of the metric components

b,J = <at, 9J>, and
(b) with respect to a frame {F,} in terms of the structural functions cy'k, where

IFJ, Fk] = eikFt'

Problem 5.11.3. Let g be a symmetric bilinear form on it which is parallel
with respect to a connexion D on µ. [We have (5.11.1) with g in place of
< , >.] Show that the curvature transformations R(X, Y) of D are skew-
adjoint with respect to g.

Problem 5.11.4. A map µ: M-* M is an isometry of a metric < , > if
K*< , > = < , >. A vector field X is a Killing field of < , >, or, an
infinitesimal isometry, if each transformation µ, of the one-parameter group of
X is an isometry of the open subsets of M on which it is defined. Show that X
is a Killing field iff Lx< , > = 0, where Lx is Lie derivative with respect to X.

Problem 5.11.5. Let D be the semi-riemannian connexion of the metric
< , > on M and define A. Y = - DYX. For X fixed, Ax is a tensor field of
type (1, 1), viewed as a field of linear transformations of tangent spaces. Extend
Ax to be a derivation of the whole tensor algebra (see Problem 3.6.8). Show
that AX = Lx - Dx. (Hint: Two derivations of the tensor algebra, for
example, AX and LX - Dx, will coincide if they coincide when applied to
functions and vector fields.)

Problem 5.11.6. Show that X is a Killing field if Ax is skew-adjoint with
respect to < , >.

Problem 5.11.7. Show that AX = LX at the points where X vanishes.

Problem 5.11.8. Let {F,} be a parallelization on M and define a semi-
riemannian metric < , > on M by choosing the a, and making the F, ortho-
normal. The connexion D of the parallelization {F,} is compatible but it will
not generally be the semi-riemannian connexion since its torsion is essentially
given by the c;k. Under what conditions on the c;k will the symmetrized con-
nexion SD be the semi-riemannian connexion?

Problem 5.11.9. Use symmetry (b) of Theorem 5.11.2 to show that RnJ, = 0
and consequently the Ricci tensor of a semi-riemannian connexion is sym-
metric; that is, R,J = RI, (see Problem 5.10.6).
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Problem 5.11.10. The scalar curvature Sofa semi-riemannian connexion is the
scalar function b"Rt; = R,. Show that Rig, dx' = I dS (see Problem 5.10.8).

5.12. Geodesics

In Ed a straight line is a curve y which does not bend; that is, its velocity field
is parallel along y when a particular parametrization is chosen-the linear
parametrization. We employ this characterization of a straight line in Ed as
motivation for the definition of a geodesic in a manifold M with a connexion D.

A geodesic in M is a parametrized curve y such that y* is parallel along y.
Equivalently, the acceleration A, = (y*D)dtdyy* = 0. If the parametrization is
changed it will not remain a geodesic unless the change is affine: -r(s) =
y(as + b), a and b constant, since any other reparametrization will give some
acceleration in the direction of y*.

The equation for a geodesic is a second-order differential equation
(y*D)d,duy* = 0. The initial conditions for a second-order differential equation
are given by specifying a starting point in, where the parameter is 0, and an
initial velocity y*(0) = v E Mm. The conditions on the defining functions of the
differential equations will be enough to assert that there is a unique solution
for every pair of initial conditions. In fact, a solution will be a C`° function of
the parameter u, the starting point in, and the initial velocity v.

Another viewpoint is to consider the velocity curves y* in the tangent bundle
TM. The velocity curves of geodesics are found to be the integral curves of a
single vector field G on TM, so the properties mentioned above follow from
previous results on integral curves. The following theorem characterizes G
intrinsically.

Theorem 5.12.1. Let D be a connexion on M,ar: TM-* M the projection taking
a vector to its base point, 1: TM --k TM the identity map on TM viewed as a
vector field over IT, and Tr* D the induced connexion on Tr. Then there is a unique
vector field G on TM such that

(a) ,r*G = I (note that we hare G: TM -* TTM and a*: TTM -* TM).
(b) (IT*D)cl = 0.

Furthermore, if T is an integral curve of G, then y = it o T is a geodesic in M
and T = y*. There is no other vector field on TM whose integral curves are the
velocity fields of all geodesics.

Proof. Equations (a) and (b) are linear equations for G(t) for each t c TM, so
they can be considered pointwise without loss of generality. At a given t c- TM,
with ,rt = m, we may combine them into one linear function equation by
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taking the direct sum as follows: ,r* : (TM)1 M. and A, = (7r* D) I: (TM)1-*
M. give

Tr* + A,: (TM)1 -* Mm + Mm (direct sum).

(The operator A, is the negative of that in Problem 5.11.5.) The dimensions of
(TM), and M. + M. are the same, namely 2d, so to show that there is a
solution we need only show that it is unique. Now we turn to the coordinate
formulation to show that we can solve for G uniquely.

Let x' be coordinates on M. Then as coordinates on TM we may use
y' = x` o it and y'+d = d_ 1. Let the corresponding coordinate vector fields be
8/Ox' = X, on M and l/8y' = Y,, a/ayi+d = Y,+d on TM. The vector fields X;
and Y, are I,-related, so a convenient basis for vector fields over IT is X, o IT =
7r* Y,. For any t e M. we have t = (tx')X,(m) = y'+d(t)X,(Trt), so the co-
ordinate expression for I is

I = y1+d X, o ,,r.

If the coefficients of D are l,Jk, then the coefficients of Tr*D with respect to
{X,orr, YQ}areH;k = Fko7rand H,k+d = 0, since IT*Yi+d = 0.

Now suppose G = G1 Y, + G'+d Y,+d. Then from (a),

tr*G = G'7r*Y, + G'+dlr*YY+d
= G'X,oa
=I
= yi+dX1 0 rr,

and hence G1 = yi+d. From (b) we conclude

(.*D)GI = (',T*D)GYi+dX, o it
= (Gyi+d)X1 0 a + yi+dGO(,rr*D)y,X, 0 rr
= (Gi+d + yi+dyk+dl'ik 0 'r)Xi 0 IT

= 0,

which allows us to solve for G'+d, giving a unique solution

G = y i + d Y. - yl+dyk+dl'Ik07' Yi+d. (5.12.1)

Now suppose that r is an integral curve of G and let y = IT 0 T. Then
= 7T*T* = 7r*(G 0 T) = I o T = T by (a). Then for the induced connexion

ony=IT - we have

(Y*D)dlduY* = (Y*D)dldul 0 T
r*(ir*D)dldul 0 T

_ (ir* D)r.l
(Tr*D)GI o T

=0
by (b). Thus y is a geodesic.
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The last statement is now trivial because any vector field is uniquely deter-
mined by its totality of integral curves.

A small part of the above proof is the proof of the following lemma which
we state for later use.

Lemma 5.12.1. Let X be a vector field on TM. Then

(a') the integral curves of X are the velocity fields of their projections into M iff
(a) it*X = I.

Remarks. (a) A vector field X on TM such that yr*X = I is called a second-
order differential equation over M. The coordinate expression for such an X
has the form

X = yt+' Yi + F' Yt+d,

and if y is the projection of an integral curve y* of X, then the components
f1 = x1 o y of y satisfy a system of second-order differential equations:

P" = cF'(f 1, ...,fd,J 1', ...,fd'),

where °F' is the function on Rad corresponding to F' under the coordinate
map (y").

(b) The vector field G on TM which gives the geodesics of a connexion D is
called the geodesic spray of D. For G the components F1 = GI Id are quadratic
homogeneous functions of the yi+d. A second-order differential equation X
over M such that the F1 are homogeneous quadratic functions of the yi+d is

called a spray over M. Consequently, for a spray we must have

Ft = _yi+dyk+d ritk o IT,

for some functions P,ik = rki on M. By a theorem of W. Ambrose, 1. Singer,
and R. Palais,t the functions Ilk are the coefficients of a connexion D on M;
that is, every spray over M is a geodesic spray of some connexion.

(c) If y is a geodesic and f' = xt o y are its coordinate components, then the
coordinate components of y* are y' y* = ft and yt+d o y* = ft'. By (5.12.1)
we get the equations satisfied by theft and f ":f t' = f t' for the first d equations,
and

f" f'fk'I'ik - rr. (5.12.2)

The second-order equations (5.12.2) are standard and can be derived easily
from the definition of a geodesic.

f Sprays, Ann. Acad. Brazil. Ci., 32, 163-178 (1960).
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Theorem 5.12.2. A connexion is completely determined by its torsion and the
totality of all its parametrized geodesics.

Proof. The torsion determines F - 17;11 and the spray G determines
r;k + r",. 1

Problem 5.12.1. Given a connexion D and a tensor field S of type (1, 2),
skew-symmetric in its covariant indices, there is a unique connexion with the
same geodesics as D and whose torsion is equal to S.

Problem 5.12.2. Show that a connexion D, its conjugate connexion D*, and
the symmetrization sD all have the same geodesics.

Problem 5.12.3. Let x1 and x2 be the cartesian coordinates on R2. Define a
connexion D on R2 by rig = 1721 = I and rJk = 0 otherwise. Then D is
symmetric.

(a) Set up and solve the differential equations for the geodesics in R2.
(b) Find the geodesic y with y(0) = (2, 1) and y*(0) = 81(2, 1) + 82(2, 1).
(c) Do the geodesics starting at (0, 0) pass through all points of R2?

Problem 5.12.4. Same as Problem 5.12.3 except that r12 = 1, r;k = 0 other-
wise.

Problem 5.12.5. If every geodesic can be extended to infinitely large values of
its parameter, the connexion is said to be complete. That is, if the spray G on
TM is complete, the connexion is said to be complete. Are the connexions in
Problems 5.12.3 and 5.12.4 complete?

Problem 5.12.6. Show that the geodesics of the connexion of a parallelization
(Xi) on M are the integral curves of constant linear combinations a'X%.

5.13. Minimizing Properties of Geodesics

In this section it is shown that in a riemannian manifold the shortest curve
between two points is a geodesic (with respect to the riemannian connexion)
provided it exists. More generally, it will be seen that the energy-critical curves
in a metric manifold are geodesics.

We first consider the local situation, showing that there is a geodesic segment
between a point and all points in some neighborhood. This may be done for
any connexion D on a manifold M. For m e M we define the exponential map
expm: M. -> M as follows. If t c- M. there is a unique geodesic y such that
y*(0) = t. We define expm t = y(l) (see Figure 20). In riemannian terms, we
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0

M.

lexpm

M

'Y(0) = m t

Y\
y(1)

Figure 20

move along the geodesic in the direction t a distance equal to the length of t.
To prove that expm is C we can pass to the tangent bundle TM and use the
flow {µ,} of the spray G. It should be clear that expm = it o µ11,,,m, where
Tr: TM -)- M is the projection, so we have factored expm into the C ° maps
IT and 11'1I M..

Since the geodesic with initial velocity at is the curve r given by r(s) = y(as),
it follows that the rays in M. starting at 0 are mapped by expm into the geo-
desics starting at m expm at = r(1) = y(a).

If we choose a basis h = {e,} of M. we obtain a diffeomorphism b: Rd -* Mm
given by b(x) = The composition with expm, (p = expm o b, maps the
coordinate axes, which are particular rays, into the geodesics with initial
velocities e,. Thus 9,.(i/au'(0)) = e,, which shows that q is nonsingular at 0
and hence q is a diffeomorphism on some neighborhood of 0. The inverse 'P -I
is called a normal coordinate map at m, and the associated normal coordinates
are characterized by the fact that the geodesics starting at m correspond to
linearly parametrized coordinate rays through 0 in Rd. Since a coordinate map
at m must fill all the points of a neighborhood of m we have proved

Proposition 5.13.1. If M has a connexion D and m e M, then there is a neigh-
borhood U of m such that for every n c U there is a geodesic segment in U starting
at m and ending at n.
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Problem 5.13.1. Show that if x' are normal coordinates at m for a symmetric
connexion D, then the coordinate basis {a,} is parallel at m and the coefficients
of D with respect to {a,} all vanish at m: r k(m) = 0.

Problem 5.13.2. Let M = C*, the complex plane with 0 removed, so that M
may be identified with R' - {0} and has cartesian coordinates x, y and co-
ordinate vector fields al, a,. Let X = xal + ya2 and Y = -yal + xa,, so
{X, Y} is a parallelization of M. Let D be the connexion of this parallelization.
Show that the exponential map of D at m = (1, 0) coincides with the complex
exponential function if we identify M. with C: aa,(m) + P,(m) H a + i8.
That is,

exp.(-al(m) + 9'92(M))= ea+iB

Theorem 5.13.1. Let y be a curve in a semi-riemannian manifold M with metric
< , >. Then y is a geodesic iff it is energy-critical.

Proof. The proof is patterned after that of Theorem 5.6.1, where the accelera-
tion with respect to the semi-riemannian connexion replaces the affine accelera-
tion used there.

Let y be the base curve of a variation Q defined on [a, b] x [c, d] with
longitudinal and transverse fields X = Q*a, and Y = Q*a,. The energy
function on the longitudinal curves is then

E(v) =
J

b <X(u, v), X(u, v)> du.

To evaluate E'(c) we differentiate under the integral with respect to v and
apply torsion zero:

a2<X, X> = 2<Q*Da,X, X>.
= 2<Q*Da, Y, X>.

However,

a,< Y, X> = <Q*Do, Y, X> + <Y, Q*Da, X),

so

02<X, X> = 2a,< Y, X> - 2< Y, Q*Da1X>.

The term 20,<Y, X> may be integrated by the fundamental theorem of
calculus, giving

(b,c)

2<Y,X> =0,
(a,c)
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since Y(a, c) = 0 and Y(b, c) = 0 follow from the fact that Q is a variation.
Thus we are left with the term involving the acceleration

A7(u) = (Q* D,9, X)(u, c)

and the infinitesimal variation c):

E'(c) _ -2
J

b <Y(u, c), A7(u)> du.

Now the proof proceeds exactly as in the affine case, showing that if there
were any point at which A, did not vanish, then a Y(., c) could be chosen so
as to produce a nonzero E'(c). Conversely, if A, = 0, that is, if y were a
geodesic, then E'(c) = 0 for all such Y(., c); that is, y would be energy-
critical. I

It is now trivial that a shortest curve between two points in a riemannian
manifold, if one exists, is a geodesic. We shall leave as an exercise the proof of
the fact that in a small enough neighborhood the geodesic segments from the
origin in a normal coordinate system are shortest curves.

An important property, which is a reasonable geometric hypothesis usually
assumed in further research and should be checked in specific models, is that
of geodesic completeness (see Problem 5.12.5). In the case of riemannian mani-
folds (but not semi-riemannian) completeness has the consequence that for
every pair of points m, n in the same component there is a shortest curve from
m to n. A famous theorem of Hopf and Rinow says that geodesic completeness
of a riemannian manifold is equivalent to metric completeness for the distance
function; that is, every Cauchy sequence converges. In particular, a compact
riemannian manifold is complete.

5.14. Sectional Curvature
A plane section P at a point m of a manifold M is a two-dimensional subspace
of the tangent space Mm. In a semi-riemannian manifold the geodesics radiating
from m tangent to P form a surface S(P) which inherits a semi-riemannian
structure from that of M (unless P is tangent to or included in the light cone
at m, in which case the inherited structure is degenerate. We exclude these
types from some of our discussion). By studying the geometry of these sur-
faces we gain insight into the structure of M The main invariant of surface
geometry is the gaussian curvature. A surface in E3 with positive gaussian
curvature is locally cap-shaped. An inhabitant of a cap-shaped surface can
detect this property by measuring the length of circles about a point, since a
circle of radius r will be shorter than 2irr. A surface in E3 with negative
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curvature is saddle-shaped and a circle of radius r is longer than 27rr. For
example, on a sphere of radius c in E3 the circles of radius r have length (see
Figure 21)

L(r) = 27rc sin
rr
c

3

= 27rr - 6c2 + ... .

Figure 21

The defect from the euclidean length is about 7rr3/3c2, which is the gaussian
curvature K = 1/c2 multiplied by 7rr3/3. In many cases computing L(r) is an
effective method of finding the gaussian curvature of S(P), which we define to
be the sectional curvature K(P) of P:

K(P) = lim
r-O

3[27rr - L(r)]
7rr3

(5.14.1)

In the semi-riemannian case we cannot define K(P) in this way unless the
restriction of < , > is riemannian or the opposite, negative definite. Thus
sectional curvature is defined only for space-like or time-like plane sections.

Another possible description of sectional curvature uses the areas of circular
disks instead of the lengths of circles. The approximate formula for area is
obtained by integrating the length:

+ .. .A(r) = 7rr2 - K 12
4

We now compute the formula for sectional curvature in terms of the cur-
vature tensor. We shall employ normal coordinates at the center point to gain
insight into the nature of normal coordinates.

Let x1 be normal coordinates at m and let bij = <81i Ej> be expanded in a
finite Taylor expansion of at least the second order,

bij = ail + bijkxk + bijhkXhXk + ...

where bijhk = bijkh and the aij = bij(m). Since a change from one normal co-
ordinate system at m to another is linear, the tensor whose components with
respect to {8i(m)} are bijhk is an invariant of the metric structure. Hence it is the
value of a tensor field on M. This tensor field can be expressed in terms of the
curvature tensor and its covariant differentials, but we shall not do so here.

The fact that the x1 are normal coordinates implies that along the radial
lines x1 = a's the velocity field a'8, is parallel, and in particular, has constant
energy a'ajaij. For,
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<atai, afa,> atafbtl
a'afa1, + bilka'alaks + b{fhkalafahaks2 + .. .

afafavt

the latter being the value when s = 0. The coefficients of each power of s must
vanish,

bgJka'Qlak = 0,

bilhkatalahak = 0, etc.

which says that the symmetric parts of the tensors with components balk,
bijhk, etc., vanish. Thus, making use of the symmetry already present, we get

bilk + bfki + bkil = 0, (5.14.2)

bilhk + bihlk + biklh + blhik + bhkif + blkth = 0. (5.14.3)

We shall need the following consequence of (5.14.3). Let v' and w' be the
components of two vectors at m. Then by some switching of indices we have

btlhkviwfvhwk = biklhv'WlvhWk
bhkiJV twlvhwk

= bihtkV'Wlvhwk.

Adding the four quantities in these relations and using (5.14.3) yields

A = (bihlk + blkth)viWlvhwk

= -2(btlhk + bhkil)v'wlvhwk (5.14.4)

= -2B,
where

B = (bilhk + bhkif)v'wfvhwk
= (bikJh + blhik)vtwlvhwk. (5.14.5)

By Problem 5.13.1 the coefficients of the semi-riemannian connexion are
zero at m. Thus by (5.11.4), evaluated at m,

ahkr;dm) = -(atbJk + albik - akbiJ)(m)
Z(blki + bikl - bilk)

= 0.

Combining (5.14.5), (5.14.2), and the symmetry of bt,, we find

biik = 0

Now differentiate (5.11.4) with respect to aP:

(aPbhk)rk + bhkalrh - --aP(aiblk + a,bik - akbij)

(5.14.6)

and evaluate at m, using the fact that (ahakblj)(m) = 2bilhk:

ahk(aPrli)(m) = bIki, + btk,P - biJkP. (5.14.7)
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Using (5.14.7) and the coordinate formula for curvature (5.10.10), we find that
we can express the curvature tensor, with the contravariant index lowered, at m
in terms of the bijhk

R'jhk(m) = (akrjh - ahrjk)(m),

so

R4jhk(m) = aiP R)hk(m)

= (aiP8krh - aiPahr k)(m)
bjihk + bhijk - bhjik - bjikh - bkijh + bkjih (5.14.8)

bihjk + bjkih - bjhik - bikjh

Now suppose that P is a plane section at m on which < , > is definite and
let v = v'8i(m) and w = w'8i(m) be a basis of P which is orthonormal, so
<v, v> _ <w, w> = S = ± 1. Then the unit vectors in P are all of the form

v cos t + w sin t,

and the circle y, or radius r in S(P) is parametrized by t, 0 :5 t < 27r, having
coordinates x'(yt) = (v' cos t + w' sin t)r. The velocity field of y, is thus

y.*t = (-v' sin t + w' cos t)r8i(y,t).

Continuing, we have

<y,*t, y,*t> = bij(y,t)(-v' sin t + w' cos t)(-vf sin t + wf cos t)r2
= r2(v'vf sine t - 2v'wf sin t cos t + w'wf cost t).

(aif + bijhk[vhvk cost t + 2vhwk sin t cos t + Whwk sin 2 t]r2 + )

r28 + r4bijhk[VhV w'wkT(4, 0)
+ 2(w'WfvhWk - V1 W1u vk)T(3, 1)

+ (vivfvhvk + w'Wfwhwk - 4v'w'v"w')T(2, 2)
+ 2(v'vfvhwk - v'wfwhwk)T(l, 3)
+ v'vf WhwkT(0, 4)] + ,

where we have set T(p, q) = cosP t sin' t. The length of y*t is the square root
of S<y,*t, y,*t> = r2(l + f(t)r2 + ) and has Taylor series ly,*tl =
r(1 + If(t)r2 +- ). When we integrate to find the length of y we note that
the integrals of T(p, q) and T(q, p) are identical, the integrals of T(3, 1) and
T(1, 3) are zero, and part of the coefficient of T(2, 2) vanishes by (5.14.3). We
have

fnT(4,0)dt= 4
2m

T(2, 2) dt =
0
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so the length of y, reduces to

2n
yrI = 2ar + I f(t)dt r3 + .

= 27rr + j&rr3b,jhk(3w'w'v'`vk + 3v'v'whwk - 4v' , vhwk) +

Thus from the definition of sectional curvature (5.14.1) we have

K(P) _ -j8bijhk(3w'w'vhvk + 3viv'whwk - 4viw'vhwk)

= -j8(3bihjk + 3bjkih - 2bijhk - 2bhkij)lliW'jthrv
= -JS(3A - 2B) = 38B,

where A and B are as in (5.14.4) and (5.14.5). From (5.14.4), A = -2B, we
have B = -(A - B)/3, so

K(P) = -S(A - B)
- -SR{jhkv'w'vhwk, by (5.14.8).

However,

<R(v, w)v, w> _ <R hkvhwkv'01(m), w'8j(m)>

= -RijhkviwJvhwk,

so

K(P) = S<R(v, w)v, w>. (5.14.9)

If we change to a nonorthonormal basis of P, again called {v, w}, then we must
divide by a normalizing factor:

K(P) _
S<R(v, w)v, w>

5.14.10)
<V,

U><W, W> - <v W>2' (

where S = 1 if < , > is positive definite on P and 8 = -1 if < , > is
negative definite on P. Frequently, (5.14.10) is used as the definition of sectional
curvature.

It follows from Problem 2.17.5 and (5.14.10) that the K(P) for all P at one
point and the metric at the point determine the curvature tensor at that point.
Thus none of the information carried by the curvature tensor is lost by con-
sidering only sectional curvatures.



CHAPTER 6
Physical Applications

6.1. Introduction
The advent of tensor analysis in dynamics goes back to Lagrange, who
originated the general treatment of a dynamical system, and to Riemann,
who was the first to think of geometry in an arbitrary number of dimensions.
Since the work of Riemann in 1854 was so obscurely expressed we find
Beltrami in 1869 and Lipschitz in 1872 employing geometrical language with
extreme caution. In fact, the development was so slow that the notion of
parallelism due to Levi-Civita did not appear until 1917.

Riemannian geometry gradually evolved before the end of the nineteenth
century, so that we find Darboux in 1889 and Hertz in 1899 treating a dynami-
cal system as a point moving in a d-dimensional space. This point of view was
employed by Painleve in 1894, but with a euclidean metric for the most part.
However, an adequate notation for riemannian geometry was still lacking.

The development of the tensor calculus by Ricci and Levi-Civita culmi-
nated in 1900 with the development of tensor methods in dynamics. Their
work was not received with enthusiasm, however, until 1916, when the general
theory of relativity made its impact.

The main purpose in applying tensor methods to dynamics is not to solve
dynamical problems, as might be expected, but rather to admit the ideas of
riemannian or even more general geometries. The results are startling. The
geometrical spirit which Lagrange and Hamilton tried to destroy in their
dynamics is revived; indeed, we see the system moving not as a complicated
set of particles in E3 but rather as a single particle in a riemannian d-dimen-
sional space. The manifold of configurations (configuration space), in which
a point corresponds to a configuration of the dynamical system and the
manifold of events (configurations and times), in which a point corresponds
to a configuration at a given time, will be considered below.

255
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In this chapter the concept of a hamiltonian manifold, that is, a manifold
carrying a distinguished closed 2-form of maximal rank everywhere, is intro-
duced (see Section 2.23). An example is given by the tensor bundle T*M =
T°M of any d-dimensional manifold M (see Appendix 3A). In particular, we
may take M to be the configuration space (see Section 6.5) of e particles in
E3 and in this case T*M is known as phase space. The (6e + 1)-dimensional
manifold obtained by taking the cartesian product of T*M with R, called
state space, is defined and motivates the notion of a contact manifold.

The Hamilton-Jacobi equations of motion

_8H
q` aPt

2H
Ps = - 8q''

where the p, and q' are generalized coordinates and momenta, H the hamil-
tonian function, and the dot differentiation with respect to the time, are shown
to be invariant under a homogeneous contact transformation, that is, a
coordinate change preserving the appearance of the 2-form

dpi A dq', i = 1, ..., 3e.

A contact manifold of dimension d is a manifold carrying a 1-form to,
called a contact form, such that w A (dw)' 0, where d = 2r + 1. The
1-form

w = p1dq' - dt, i = I, ..., 3e,

where t is the coordinate on R in T*M x R, is evidently a contact form.

6.2. Hamiltonian Manifolds
A d-dimensional manifold M, where d = 2r, is said to have a hamiltonian (or
symplectic) structure, and M is then called a hamillonian (or symplectic)
manifold, if there is a distinguished closed 2-form 0 of maximal rank d
defined everywhere on M. The form S2 is called the fundamental form of the
hamiltonian manifold which is now denoted (M, 0).

As in riemannian geometry, the nondegenerate bilinear form SZ may be
viewed as a linear isomorphism Qm: Mm ± Mm* for each m e M, and hence
as a bundle isomorphismt 12: TM -* T*M. That is, we may raise and lower
indices with respect to 12, although because of the skew-symmetry of 12 there
is now a difference in sign for the two uses of Q. An explicit version of this
isomorphism, which we shall employ in our computations, is given by the

t A bundle isomorphism is a diffeomorphism from one bundle to another which maps
fibers into fibers and is an isomorphism of the fibers. In this case the fibers are the
vector spaces M. and M, .
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interior product operators i(X) of Section 4.4. For a vector field X the
corresponding 1-form flX is given by

S2X = i(X)a. (6.2.1)

We shall denote the inverse map by V = Q-1: so that if r is
a 1-form on M, then Vr is a vector field on M and 12Vr = r. In the notation
OX and Vr it would be more correct to write S2 o X and V o r, indicating their
structure as compositions of maps X: M -. TM and 0: TM -F T*M, and
similarly for Vr.

We define the Poisson bracket of the 1-forms r and 0 in terms of the corre-
sponding fields Vr and VO by

[r, 0] = i([VT, VB])12 = c[Vr, VB].

Clearly the bracket operation on 1-forms is skew-symmetric.

Proposition 6.2.1. The Poisson bracket of two closed forms is exact.

Proof. Using the fact that i(Y)c is a contraction of Y® fl and that Lx
commutes with contractions (Problem 3.6.3) and is a tensor algebra deriva-
tion, it is easy to show that Lx is an inner product derivation:

Lx(i(Y)i2) = i(LxY)c + i(Y)Lxf2.

We also use the formula Lx = di(X) + i(X)d (Theorem 4.4.1). So for closed
1-forms r and 0, if X = Vr and Y = V9,

[r, 0] = i([X, Y])ci
= i(LxY)S2 + i(Y) dr
= i(LxY)S2 + i(Y){di(X)S2 + i(X) dc}
= i(L5Y)c + i(Y)Lxc
= Lxi(Y)c
= di(X)B + i(X) dO
= d{i(X)O}.

The following theorem should be compared with the single point version,
Theorem 2.23.1. The corresponding theorem for a 1-form w, which should
be thought of as a primitive for fl, that is, S2 = dw, is called Darboux's theorem
and is stated below as Theorem 6.8.1. The proofs of these theorems make use
of the converse of the Poincar6 lemma (Theorem 4.5.1) and Frobenius'
complete integrability theorem (Theorems 3.12.1 and 4.10.1).

Theorem 6.2.1. Let S2 be a closed 2 -form of rank 2k everywhere on the d-
dimensional manifold M. Then, in a neighborhood of each point of M, coordinates
pi, q' (i = 1 , ..., k), and u a (a = 1, ..., d - 2k) exist such that

S2 = dpi n dq.
(Proof omitted.)
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Since the fundamental form of a hamiltonian manifold (M, 0) is closed and
of rank d, it has local expressions

O.=dp,Adq', i= 1,...,r=d/2.
We call such p;, q' hamiltonian coordinates. The jacobian matrix of two systems
of hamiltonian coordinates, say, p,, q' and P, Q', is a symplectic matrix (see
Theorem 2.23.2). Specifically, we have

api - aQ'
,

apt aP,
,

aPr 8q'
tQ' aq'

6 2 2
2!e _ IQ" aq' _ aPJ

. . )(

aP, aPi aQ, pt

Problem 6.2.1. A manifold M admits a hamiltonian structure if there is an
atlas on M such that every pair of overlapping coordinate systems in the atlas
satisfies equations (6.2.2).

Proposition 6.2.2. In terms of hamiltonian coordinates p,, q' the operators
) and V are given by

S2(a, + b' -b' dp, + a, dq', (6.2.3)
`\ pt aq

V(f' dpi + g, dq') = g, a (6.2.4)
aPs a9

In particular, for a function f on M,

(6.2.5)V df -
89' p ap T-71,

[These follow immediately from the definition of the operator i(X).]
iff and g are functions on M, then df and dg are closed 1-forms. The

particular primitive for the bracket [df, dg] found in the proof of Proposition
6.2.1 is denoted (f, g} and is called the Poisson bracket of the functions f and g:

(f g) = i(Vdf)dg = (Vdf)g.
In terms of hamiltonian coordinates p,, q',

(6.2.6)

if g} = af, ag - of agdq ap; ap, aq
(6.2.6)

The following proposition is left as an exercise.

Proposition 6.2.3. Let f and g be functions on the hamiltonian manifold
(M, S2). Then the following are equivalent.

(a) f is constant along the integral curves of V dg.
(b) g is constant along the integral curves of V df.
(c) {f, g} = 0.
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Problem 6.2.2. Verify:

(a) {f q`} a (a') dqi = 12 8p4

(b) {f, pi} = of , (b') dpi Q aq

Problem 6.2.3. (a) The Poisson bracket operation is bilinear.
(b) Verify the identity
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f f gh} = g{ f, h} + h{ f, g}.

(c) Prove the Jacobi identity

f f, {g, h}} + {g, {h, f }} + {h, f f, g}} = 0-

A vector field X is said to be a hamiltonian vector field or an infinitesimal
automorphism of the hamiltonian structure if it leaves the hamiltonian structure
invariant, that is, if

Since 92 is closed,
LxS2=0.

L,Q = di(X)11 + i(X) df2
= di(X)f2.

Thus X is hamiltonian if QX is closed. There are many closed 1-forms on
a manifold (for example, the differential of any function), so hamiltonian
structures are rich in automorphisms. This is just the opposite to the situation
for riemannian structures, where the existence of isometrics (automorphisms)
and Killing fields is the exception rather than the rule.

Problem 6.2.4. Show that the Lie bracket of two hamiltonian vector fields
is hamiltonian.

Problem 6.2.5. Let N = P = S2 be the two-dimensional sphere of radius
I in E3, each provided with the inherited riemannian structure. Let M =
N x P and let q: M -* N, p: M -- P be the projections of the cartesian
factorization of M. If the riemannian volume elements of N and P are a and fi,
show that S2 = q*a + p*g is a hamiltonian structure on M = S2 x S2.

6.3. Canonical Hamiltonian Structure
on the Cotangent Bundle

The topological limitations for the existence of a hamiltonian structure on a
manifold are quite severe, particularly in the compact case. However, there is
one important class of hamiltonian manifolds-the cotangent bundles of
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other manifolds. By dualization with a riemannian metric we see that the
tangent bundle of a manifold is diffeomorphic to the cotangent bundle, and
therefore admits a hamiltonian structure also.

Theorem 6.3.1. There is a canonical hamiltonian structure on the cotangent
bundle T*M of a manifold M.

Proof. On the tangent bundle TT*M of T*M = N we have two projections,
the one into T* M, the ordinary tangent bundle projection 7r: TN-* N, and
the other into TM, the differential p*: TT*M -* TM of the cotangent bundle
projection p: T*M -* M. When both are applied to the same vector x E TT*M
the two results interact to produce the value of a 1-form B on x:

<X, 0> = <P*x, Irx>.

That B actually is a 1-form is clear, since n = 7rx remains fixed as x runs
through (T*M) and p* is linear on each (T*M),,. Clearly dO is closed. We
shall show that it is of maximal rank. Local expressions for 0 and dO will be
produced in the process.

Let {X,} be a local basis on M, {w'} the dual basis, and p*w' = -r'. Each
X, gives rise to a real-valued function p, on T*M, the evaluation on cotan-
gents: If n e T*M, then

p,n = <X,(pn), n>. (6.3.1)

The expression in terms of {X,(m)} of an arbitrary vector t e Mm is given by
the w' on t:

t = <t, wm>X (m)

For x E (T*M),,, we have p*x E Mm, where m = pn = prrx, so

P*x = <P*x, wm>X1(m)
= <x,P*wm>X1(m)
= <x, Tn>X1(m)

The local expression for 0 is now easy to compute:

<x, 0> = <p*x, n>
= <<x, Tn>X1(m), n>

= <x, Tn><XX(m), n>

= <x, Tn>p,n
= <x, (pin)-n>,

and thus
0 = PtT'

Taking the exterior derivative of 0 gives

dO=dp,AT'+pidr'.

(6.3.2)

(6.3.3)
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To show that dO has maximal rank we consider the special case of a coordinate
basis, X, = 8/8x'. Then w' = dx' and dr' = d(p*dx') = p*d2x' = 0. More-
over, if q' = x' op, then the p, and q1 are the special coordinates on T*M
associated with the coordinates x1 on M (see Appendix 3A). Thus

dO = dp, A dq', (6.3.4)

which is obviously of maximal rank.

Note that the fundamental form I = dO of the hamiltonian structure on
T*M is exact. We call B the canonical 1 form and 0 the canonical 2form
on T*M.

For any Cm vector field X on M we define a CW function Px on T*M,
as we defined p, for X, in (6.3.1), by

Pxn = <X(pn), n>.

We call Px the X-component of momentum. Since dPx is a closed 1-form on
T*M the vector field V dPx is an infinitesimal automorphism of the canonical
hamiltonian structure on T*M. In the following proposition we show how
V dPx is obtained directly from the flow of X.

Proposition 6.3.1. If {µ,} is the flow of X, then {µ,*} is the flow of V dPx.
Moreover, p* V dPx = - X o p.

Proof. Let 0, = µ*: T*M--± T*M, Mn*, -* we have p o e =
µ_, op. Now we show that the canonical 1-form 0 is invariant under p,; that
is, p*O = 0. Indeed, for y e (T*M),,,

<y, (q*O)(n)> _ <y, p*(O)-pen))>
_ <9'e*Y, O(µ*n)>

_ <P*c' sY, ,u*n>
_ <tie*P*q)t*Y, n>

<(IL, o µ-, oP)*Y, n>
_ <P*Y, n>
_ <Y, 0(n)>

It is trivial to verify that {q',} is a flow on T*M, so there is a vector field W
on T*M whose flow is (9),). What has been shown is that Lx,O = 0. But
Lx,O = di(W)O + i(W) dO = d<W, 0> + S2W, so W = - Vd<W, 0>. How-
ever, for n E T*M, if y is the integral curve of W starting at n, then y(t) _ Tn
and py(t) = p-ptn = p_,pn. Thus p*W(n) _ -X(pn); that is, p*W = -X o p.
Finally,

<W, O> _ <P*W, -W>
_ - <X op, the identity on T*M>
_ -Px. I
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The vector field - V dPx, which is p-related to X, is called the canonical lift
of X to T*M.

Problem 6.3.1. If x' are coordinates on M, a, the coordinate vector fields,
p, the a,-component of momentum, q` = x` o p, and X = f 0j, then the canoni-
cal lift of X to T*M is

a a
- V d P x = -pi(ajf ° p)

a p r
+ f ° p aq,

Problem 6.3.2. A tangent y to T*M is called vertical if p*y = 0.
(a) The vertical vectors in (T*M) are a d-dimensional subspace W(n) of

(T*M)n
(b) The distribution W has as local basis {alap,}.
(c) The map a,,: W(n) - . M;,, defined by a (c, a/ap,(n)) = c, dx'(pn) is a

linear isomorphism independent of the choice of coordinates x'.
(d) The vector field VII is vertical and n. That is, VII is the

"displacement vector field" when tangent vectors to Mm* are identified with
elements of M,*,.

Problem 6.3.3. We can define the canonical lift of X to TM as the vector field
whose flow is the dual flow {µ,*}. Show that the canonical lift to TM is
X* : TM -* TTM.

6.4. Geodesic Spray of a Semi-riemannian Manifold
The hamiltonian structure on T*M enables us to obtain the geodesic spray
(see Theorem 5.12.1) of a semi-riemannian connexion on M directly in terms
of the energy function. We redefine the energy function K on TM by inserting
a factor of 1/2: For v c TM,

Kv = }<v, v>,

where < , > is the semi-riemannian metric. The identification of tangents
and cotangents due to < , > is a bundle isomorphism µ: T*M - TM. By
means of µ we may transfer the energy function to a function on T*M,
T = K ° µ. Likewise, the geodesic spray G on TM is p-related to a vector field
Jon T*M, J = µ* 1 ° G ° µ. The notation is justified by the following commuta-
tive diagram:

T*T*M V )TT*M "* TTM

T*M TM

\11

M
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We retain the names "energy function" and "geodesic spray" for T and J.

Lemma 6.4.1. The geodesic spray J is characterized as follows. Let D be the
semi-riemannian connexion and E = p*D the connexion over p induced by D.
View µ as a vector field over p. Then

(a') P*J = µ
(b')E,µ=0.
Proof. The equations (a') and (b') are immediate from (a) and (b) of Theorem

5.12.1 by chasing the diagram.
The following lemma is given by some simple computations which we

omit.

Lemma 6.4.2. Let {F,} be a local orthonormal basis on M, at = <F,, F,), and
p, = PFt, the F,-component of momentum. Then the local expressions for 1z
and T are

µ = 2 aP,F, o P, (6.4.1)

T = 2 a,pa (6.4.2)

Theorem 6.4.1. The geodesic spray on T*M of a semi-riemannian connexion
D on M is J = - V dT, where T is the energy function on T*M and V is the
inverse of the canonical hamiltonian operator SZ on T*M.

Proof. We shall use the notation of the above lemmas. Let {w'} be the dual
basis of {F,}, a4 the connexion forms of D, -r' = p*w', and r; = p*w}. Then the
r; are the connexion forms of E = p*D and they, as well as the Co", satisfy the
skew-adjointness condition: -r; _ -a,a;r; (no sum). The first structural
equations pull back to T*M to give

dr'= -r;Art,
which may be substituted in (6.3.3) to obtain the local expression for the
canonical 2-form

Q = (dpi - PiTi) A r'.
Let X = - V dT. Then, by (6.4.2) and the definition of V,

dT = a,P, dp,
-i(X)S2

= r'(X) dpi - {Xp, - p;r;(X)}T' - r'(X)p;T;. (6.4.3)

Since {dp,, T'} is a local dual basis on T*M and the ri are linear combinations
of the T', the coefficients of dpi in (6.4.3) must match:

TI(X) = a,p,. (6.4.4)
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It follows that r1(X)p17J, vanishes because

r'(X)p'r( I aiplpill a,P,P1ala+ri
/.1 l.1

aP'P,T1

Thus the remaining terms in (6.4.3) are zero; that is,

Apt - pjr{(X) = 0. (6.4.5)

The formulas (6.4.4) and (6.4.5) are the local expressions for the fact that
X satisfies (a') and (b'):

(a') p,X = w'(PsX)FF o p = T(X)F+ o p a,p,FF o p = p.

(b') Exµ = Ex I ap,F, o p = I al(Xpl)FF o P+ a1p'EEF' o P

{a,(XPl) + a'p,Ti(X)}F, o p

a;{Xp, -pjri(X)}F, op

=0.

Hence X = J by Lemma 6.4.1.

6.5. Phase Space
Let us consider the classical mechanics of e particles in R3 with masses
ml, ..., me. Since no two particles can occupy the same position, the con-
figuration space M of this system is a subset of R3e. If (x31-2, x3'-1, x31) are

the coordinates of the ith particle, then the points of M are those points of
R3e for which

(x3,-2 - x31-2)2 + (x3/-1 - x31 - 1)2 + (x3, - x3')2 # 0,

for all i 76 j. Thus M is an open submanifold of Rll3e and has dimension 3e.
If (F3i-2, F3i-1, F31) are the components of the force field on the ith particle,

then the equations of motion are
d2x3' - a

F3t = m1 dt2 (no sum),

where i=1,...,e,ands=2,1,0.Settingk1=k2=k3=ml,k4=k5=
ke = m2, etc., the equations become

d2x1
k1

ut2
= F1 (no sum), (6.5.1)

i = 1, ..., 3e. The generalized force components F1 are given by F, _
-8U18x1 in the case where a potential energy function U exists.
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Another feature of this system is that there is a kinetic-energy function K,
the sum of the kinetic energies of the e particles. It is a function of the veloci-
ties of the particles and hence a function on the tangent bundle TM of the
configuration space. For v = v' e,(m) a M., the coordinate formula is

K = 2 2 k,(v')'.

Since K is a quadratic form on each M., it may be polarized (see Section 2.21)
to obtain a riemannian metric on M for which K is the energy function:

< , > = I k,(dx' (9 dx').

This riemannian metric is called the kinetic-energy metric on M. In the simple
example under discussion this metric is affine, so the geodesics are the straight
lines in Ra. If the force field vanishes, F, = 0, then the solutions to (6.5.1)
are exactly the geodesics, a fact which generalizes to more general systems.

Let us examine this example in light of the previous structures we have
studied-riemannian and hamiltonian. The second-order differential equations
of motion can be viewed as a vector field on the tangent bundle of the con-
figuration space. However, from physical arguments we conclude that a force
field should be a 1-form-not a vector field. Indeed, elementary evidence
that a force field exists is usually the fact that work is done in moving along
various curves. The nature of these work values associated with curves is
precisely the same as the association of the value of an integral of a 1-form
with a curve. Moreover, a force field is frequently given by the differentiation
of a potential field U, which makes invariant sense only if the force is -dU.
The amount of work done along a curve is independent of the mass moved,
so the masses involved in (6.5.1) must be related to some other part of the
structure. The change from a 1-form force to the vector field force apparent
in (6.5.1) is due to the identification of tangents and cotangents by means of
the kinetic-energy metric. The interaction of these two items, the force 1-form
and the kinetic-energy metric, are a sufficient formulation of the structure of
a classical mechanics problem. How, then, does the hamiltonian structure
enter the picture? The answer seems to be one of convenience, improvement
of insight, and better possibilities for generalization rather than necessity.
The hamiltonian structure on T*M is available, so we might as well use it.
The abstract theorems of Section 6.2. translate quickly and naturally into
significant theorems on conservation of momentum.

In summary, a possible mathematical model of a mechanical system con-
sists of

(a) A configuration space M.
(b) A force field, a 1-form F on M.
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(c) A kinetic-energy metric, which gives us a diffeomorphism µ: TM->.
T*M and allows us to view velocity fields of trajectories and all other features,
as a part of T*M (that is, we assign a momentum to a velocity via <

(d) The canonical hamiltonian structure on T*M.

Let us carry out the transfer of all the structure of the above example to
T*M in terms of the local coordinates p, = Pa, and q' = x' -p on T*M.
Then the differential equations for the particle paths (trajectories), (6.5.1), are
carried into first-order differential equations for the momentum path in
T*M,

d ) Ps, -Pt=F,°p. (6.5.2)

A flow is therefore defined on phase space T*M withllvector field

t C9

X (k, aq, + Fi -p P-) (6.5.3)

The integral curves of X are also called trajectories.
Using formula (6.2.3) for the operator S of the canonical hamiltonian

structure on T*M gives

i)X = - k[dp, +>F,°pdq'

_ -dT + p*F, (6.5.4)

where T = 2 k` = K ° µ is the kinetic energy on T*M and F = F, dx' is

the force field on M. In the case where the force field is a potential field, say,
F = -dU, then letting V = U ° p we get the hamiltonian function on T*M;
that is, the total energy of the system

Then we can write (6.5.4) as
H = T + V.

QX = -dH.

It follows from Proposition 6.2.3 and the trivial fact {H, -H) = 0 that
H is constant along the trajectories. This is called the law of conservation of
energy. More generally, Proposition 6.2.3 shows a function f on T*M is con-
stant on trajectories iff {f, H) = 0; that is (Vdf)H = 0.

Suppose that the potential U depends only on the euclidean distances
between particles. Then any euclidean motion of R3 leaves U invariant. The
extension of such a motion to TR3 also leaves the kinetic energy of each
particle invariant. We extend a euclidean motion to a diffeomorphism p of
R3e by making it act the same on each of the e copies of R3, and M is obviously
an invariant subset of this extension. Finally, 99 is extended to T*M, that is,
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to (p*)-1. The inverse is required to make the projection be p, since P* pulls
forms back rather than pushing them forward. The extension (qi*)-1 leaves
T and V invariant, and hence leaves H invariant; that is, H o q* = H.

A parallel vector field Y = a9, + ba + cap, on R3, where a, b, and c are
constant, has as its flow a 1-parameter group of translations. The extension
to M is

eZ
a s/ax3t - 2+ b a/ax3t -1 + c a/ax34

t=1

The extension to T*M is the canonical lift - V dPZ of Z (see Proposition
6.3.1). When U depends only on distances H is invariant under the flow of
- V dPZ; that is, His constant along the integral curves of - V dPZ. Again by
Proposition 6.2.3, it follows that PZ is constant along trajectories. This is the
law of conservation of linear momentum. Similarly, the law of conservation of
angular momentum is derived by taking Y to be the vector field on R3 whose
flow is a 1-parameter group of rotations about some axis.

There is no need to confine the above analysis to the case of e particles in
R3 or the case where the kinetic-energy metric is affine. More general mech-
anical systems are produced by introducing restraints on the positions and
velocities of the particles. One example is the double pendulum which has
been discussed in Section 1.2(c). The configuration space of a rigid object
free to rotate around a fixed point is RP3, the three-dimensional projective
space.

A system in which all the restraints on the velocities are consequences of the
restraints on the positions is called holonomic. In such a system every tangent
to M, the configuration space, is the tangent to some trajectory, so the collec-
tion of possible velocities is all of TM. If the same particles are viewed as being
in R3, then the configuration space becomes a submanifold of Rae, with
dimension equal to the number of degrees of freedom. The kinetic-energy
metric considered above restricts to M and still gives an identification of
TM and T*M, so the latter is the phase space in the holonomic case. The
force field F is still a 1-form on M, the kinetic-energy function T is defined
on T*M, and the trajectory flow on T*M is given as X = V(-dT + p*F),
as above. If the force field vanishes, the trajectories in M are the geodesics of
the kinetic-energy metric, by Theorem 6.4.1.

If the force field is a potential field -dU, then the hamiltonian H = T + V
is defined as above, and the equations of motion on T*M are those given by
the vector field - V dH. Thus if pt, q' are hamiltonian coordinates for the
canonical structure on T*M, the equations of motion are the Hamilton-
Jacobi equations

dq' aH dpi _ aH
(6.5.5)T, ap,' dt - aqt-
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One advantage of this analysis is that we know that arbitrary hamiltonian
coordinates may be used. We do not require, for example, that they arise from
coordinates x' on M, that is, p, = Pa, and q' = x' -p. Instead, we may try
to find coordinates which simplify the expression for H. In particular, if we
can include solutions of {f, H} = 0 (including H itself) among the coordinates,
then these coordinates will not appear except in the specification of their
initial (and hence perpetual) values.

A system for which there are restraints on the velocities which are not
implicit in the restraints on the positions is called nonholonomic (or anholo-
nomic). In the commonest type of nonholonomic system the velocity re-
straints are linear at each point of the configuration space and thus determine
a distribution D on M. We call this a linear nonholonomic system. If the distri-
bution D is completely integrable, then the maximal integral submanifolds
slice M into a family of holonomic systems; that is, for each initial state there
are additional positional restraints, giving a holonomic system which includes
the trajectory of the initial state. In the genuinely nonholonomic system, the
restraints determine a submanifold Q of TM, where M is the configuration
space, and we define the phase space to be P = µ-1Q, a submanifold of
T*M. The force field F may fail to be consistent with the velocity restraints,
so we must use the restriction of p*F to P in the equations of motion (6.5.2).
The first d of these equations, dq'/dt = p,/k,, remain unchanged except for the
restriction of the p, to P, because they express the fact that the curve in T*M
is the velocity field of the curve in M transformed by p-'. However, the next
step, corresponding to equation (6.5.4), breaks down because 0 becomes
degenerate on P and is no longer a hamiltonian structure. To show this we
note that locally a nonholonomic system is given by k restraints of the type

d

dpi = f' dpl, i = 1, ... , k, (6.5.6)
/=k+1

where p, is the 8t-momentum component for some coordinate system x' on
M with 8, = 218x'. We leave as an exercise the proof of the fact that when
(6.5.6) is substituted in 0 = dp, A dq', the rank becomes 2(d - k). But
dimP=2d-k.

An example of a linear nonholonomic system is given by a ball rolling on a
surface without sliding. The configuration space is the same as in the case of
a sliding ball and is thus five-dimensional. But there are two linear restraints
on the velocities, so the phase space P is eight-dimensional. The velocity
distribution is not integrable, since any configuration can be reached from
any other by sufficient rolling.

For the remaining sections we assume that the systems under study are
holonomic.
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6.6. State Space
In the above analysis we have ignored the possibility that the force may be
time-dependent. This occurrence does not ruin the analysis since we may insert
the time variable t as an extra parameter. The equations of motion (6.5.2)
are still valid but we must bear in mind that F, o p is not defined on T*M but
on S = T*M x R. We also need another equation for the remaining variable
t, namely, dt/dt = 1. Thus the vector field X, given by (6.5.3), must be re-
placed by

X (Pt a
aq, + F, ° p P,/ + at. (6.6.1)

We may regard the previous X as a family of vector fields on T*M depending
on a parameter t, in which case (6.5.4) still makes sense. We call S the state
space of the system.

In the case where the force is the potential field of a time-dependent potential
function V = U o p on T*M, the component (aV/8t) dt of dH must be dis-
carded. Thus we have

X= -VdH+at' (6.6.2)

where V = Q-1. The condition that a function f on S be constant on trajec-
tories, Xf = 0, may be written

{f,H}+a = 0. (6.6.3)

A solution f to the partial differential equation (6.6.3) is called a first integral
of the equations of motion. To simplify the coordinate expression for the
equations of motion the obvious technique is to include numerous first
integrals among the coordinate functions on S. However, H is no longer a first
integral in the time-dependent case, since {H, H} + aHlat = aHlat 0, so
total energy is not conserved.

6.7. Contact Coordinates
If q: T*M x R -± T*M is the cartesian product projection, that is, q(n,t) = n,
then we get a 1-form q*6 on S from the canonical 1-form 0 on T*M. We
shall not distinguish q*0 and 0 notationally, thus viewing 0 as a 1-form on S.
We call w = 0 - dt the canonical contact form on T*M x R. In terms of the
special coordinates p, = Pa, and q' = x' o p we have

w=p,dq'-dt. (6.7.1)

Coordinates P,, Q', u on S are called contact coordinates if the expression for
w has the same appearance; that is,

w = P, dQ' - du. (6.7.2)
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If we take the exterior derivatives of (6.7.1) and (6.7.2) we obtain

S2 = dpi A dq' = dP, A dQ'; (6.7.3)

that is, the expression for the 2-form S2 has the same appearance for any
contact coordinate system. Moreover, the codistribution in T*S spanned by
the dp, and the dq' is the same as the codistribution E* spanned by the dP,
and the dQ'-the range of Q viewed as a map TS -* T *S (see Theorem
2.23.1). The associated distribution E is thus one-dimensional and it is clearly
spanned by a/at or a/au. Thus a/at and a/au are linearly dependent; that is,
a/au = f a/at. But <a/au, w> = <a/au, du> = 1 = <f a/at, w> = f<a/at, dt> =
f, so alau = alat. In other words, the vector field alat is determined uniquely
by co and is a coordinate vector field of any contact coordinate system. An
immediate consequence is that

u = t + a function of the p, and the q'.

Now we show that the trajectories are determined by co, the 1-form
= -dT + p*F, and the kinetic-energy function T. First we have that

i(a/at)s2 = 0, so equation (6.5.4) is still valid with the new trajectory field X
given by (6.6.1) on S; that is,

i(X)S2 = r. (6.7.4)

This implies that r belongs to the codistribution E*. Second, we have

<X, w> = 2T - 1, (6.7.5)

from (6.6.1) and (6.7.1). The desired result follows from (6.7.4), (6.7.5), and
the following proposition.

Proposition 6.7.1. Let T be any 1 -form belonging to the codistribution E*
annihilated by alas and let f be any function on S. Then there is a unique vector
field X such that :

(a) i(X)Q = T.
(b)<X,w>=f
Outline of proof. Let X = f, a/ap, + g' a/aq' + h a/at, T = a' dp, + b, dq'

and compute (a) and (b) in terms of coordinates. I

Suppose that P,, Q' are hamiltonian coordinates on T*M. Then

d(P,dQ'-p,dq')=S2-Q=0,
so by the converse of the Poincare lemma (Theorem 4.5.1) there is a function
f such that

P,dQ' - pi dq'=df

Letting u = t + f we have w = P, dQ' - du; that is, P,, Q', u are contact
coordinates. These special contact coordinates, for which the P, and the Q'
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are functions on T*M, are called homogeneous contact coordinates. The fact
that homogeneous contact coordinates always arise from hamiltonian coor-
dinates as above is trivial to prove. Thus the contact coordinates are more
general than hamiltonian coordinates, and consequently the freedom to
operate with contact coordinates gives us greater simplifying power.

6.8. Contact Manifolds
A manifold M of dimension d = 2r + 1 is said to have a contact structure, and
M is then called a contact manifold, if M has a distinguished 1-form w such that

w A (dw), $ 0.

The form w is then called a contact form. (The power of dw is the iterated wedge
product.)

As with the canonical contact structure on T*M x R discussed above, we
get a one-dimensional distribution E and the associated codistribution E*, the
latter being spanned by the range of n = dw considered as a map from
tangents to cotangents, and E being the space annihilated by n; that is, a
vector field Y belongs to E if i(Y)S2 = 0. A special basis for E is singled out
by the further condition <Y, w> = 1, and the Ye E which satisfies this is
called the contact vector field. More generally, we have that Proposition 6.7.1
is valid for an arbitrary contact structure.

We define contact coordinates on a contact manifold to be coordinates
pt, q', t, i = 1, ..., r, such that the expression for to is

w = p, dq' - dt.
That contact coordinates exist is a consequence of the following statement,
known as Darboux's theorem, the proof of which is omitted. The purpose is to
give a canonical simple coordinate expression for a 1-form whose algebraic
relation to its exterior derivative is stable in a neighborhood.

Theorem 6.8.1. Let w be a I -form defined in a neighborhood of m e M.

(a) If w A (dw)k =0 and (dw)k+1 = 0 in a neighborhood of m, and
(dwm)k 54 0 and wm 0 0, then there are coordinates pt, q' (i = 1, .. , k), and uX
(a = 1, ..., d - 2k) at m such that

k

w = pt dq'.

(b) If (dw)k+ 1 = 0 in a neighborhood of m and wm A (dwm)k 0, then there
are coordinates pt, q' (i = 1 , ..., k), t, and u° (a = 1, ..., d - 2k - 1) at m
such that

k

pi dq' - dt.
t=1
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It is case (b) which applies to a contact form, with k = r.
If M is a contact manifold with contact form w, then the one-dimensional

codistribution spanned by to has as its associated distribution the 2r-dimen-
sional distribution D annihilated by w; that is,

D(m) _ {x a M. I <x, w) = 0}.

We call D the contact distribution.

A diffeomorphism f of M onto M is said to be a contact transformation of
M if f*w = hw, where h is a nowhere-zero function on M. Equivalently,
f*D = D. It can be shown, using the techniques of Section 4.10, that the
highest dimension of integral submanifolds of D is r. Moreover, if p,, q', t are
contact coordinates, then the coordinate slices q1 = c', t = c are r-dimen-
sional integral submanifolds. These facts allow us to state the following
characterization of a contact transformation.

Theorem 6.8.2. A diffeomorphism of a contact manifold M maps every integral
submanifold of D of highest dimension to another integral submanifold of D
iff it is a contact transformation of M.
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Hamilton-Jacobi equations, 267
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Structure)
Hausdorff space, 12
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Hodge star operator, 108, 195
Holonomic system (see System)
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Homotopy, algebraic, 175
Hopf-Rinow theorem, 250
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Hypersurface, 30, 43
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linear, 86
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function theorem, 23
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of matrix, 66

Isometry, 243
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Isomorphism
bundle, 256
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Jacobi identity, 134, 259
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Killing field, 243, 259
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of curve, 209
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Lie
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Linear function, 69, 70
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product, 24
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coordinate, 20
differentiable, 35
differential of, 55
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singular point of, 23
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symplectic, 115
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unitary, 115, 162

Measure, 187
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complete, 250
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induced,238
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theory, 147
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coordinate, 20
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Onto function, 5
Operator
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Related by a map
vector fields, 138, 220
tensor fields, 139
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countable, 7
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level, 147
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phase, 118, 266
projective, 33, 35, 163
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tangent, 48
tensor, 78
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Spanning, 68
Sphere, 27

d-dimensional, 30
parametrization of, 29

Stokes' theorem, 196
Structure

hamiltonian, 256, 260
symplectic, 256

Submanifold, 41
of cartesian space, 43
critical, 145
integral, 152

maximal connected, 154
open, 24
with boundary, 185

Subspace, topological, 11
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direct, 61, 68
of vector subspaces, 68

Surface, 26
orientable, 29, 162
singular points of, 27, 28
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Symmetry property, 78, 91
Symplectic (see Form, Group, Matrix,

Structure)
System

anholonomic, 268
differential, 151
holonomic, 267
mechanical, 265
nonholonomic, 268
pfaffian, 157

Tangent, 48, 54
bundle, 55, 118, 158, 164
components of, 53
to curve, 49, 57

second-order, 49
map, 55
transformation law of, 54
vertical, 262

Taylor expansion, 52, 136
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field, 118
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over vector space, 78
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skew-symmetric, 91
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