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1
The role of gravity

The view of physics that is most generally accepted at the moment is
that one can divide the discussion of the universe into two parts. First,
there is the question of the local laws satisfied by the various physical
fields. These are usually expressed in the form of differential equations.
Secondly, there is the problem of the boundary conditions for these
equations, and the global nature of their solutions. This involves
thinking about the edge of space—time in some sense. These two parts
may not be independent. Indeed it has been held that the local laws
are determined by the large scale structure of the universe. This view
is generally connected with the name of Mach, and has more recently
been developed by Dirac (1938), Sciama (1953), Dicke (1964), Hoyle
and Narlikar (1964), and others. We shall adopt a less ambitious
approach: we shall take the local physical laws that have been experi-
mentally determined, and shall see what these laws imply about the
large scale structure of the universe.

There is of course a large extrapolation in the assumption that the
physical laws one determines in the laboratory should apply at other
points of space-time where conditions may be very different. If they
failed to hold we should take the view that there was some other
physieal field which entered into the local physical laws but whose
existence had not yet be.n detected in our experiments, because it
varies very little over a region such as the solar system. In fact most of
our results will be independent of the detailed nature of the physical
laws, but will merely involve certain general properties such as the
description of space-time by a pseudo-Riemannian geometry and the
positive definiteness ot enesgy density.

The fundamental interactions at present known to physics can be
divided into four classes: the strong and weak nuclear interactions,
electromagnetism, and gravity. Of these, gravity is by far the weakest
(the ratio Gm?[e? of the gravitational to electric force between two
electrons is about 10~%°). Nevertheless it plays the dominant role in
shaping the large scale structure of the universe. This is because the



Preface

The subject of this book is the structure of space-time on length-
scales from 10-13c¢m, the radius of an elementary particle, up to
10%cm, the radius of the universc. For reasons explained in
chapters 1 and 3, we base our treatment on Einstein’s General
Theory of Relativity. This theory leads to two remarkable pre-
dictions about the universe: first, that the final fate of massive
stars is to collapse behind an event horizon to form a ‘black hole’
which will contain a singularity; and secondly, that there is a
singularity in our past which constitutes, in some sense, a begin-
ning to the universe. Qur discussion is principally aimed at developing
these two results. They depend primarily on two areas of study: first,
the theory of the behaviour of families of timelike and null curves in
space-time, and secondly, the study of the nature of the various
causal relations in any space—time. We consider these subjects in
detail. In addition we develop the theory of the time-development
of solutions of Einstein’s equations from given initial data. The dis-
cussion is supplemented by an examination of global properties of
a variety of exact solutions of Einstein’s field equations, many of
which show some rather unexpected behaviour.

This book is based in part on an Adams Prize Essay by one of us
(S. W.H.). Many of the ideas presented here are due to R. Penrose
and R. P. Geroch, and we thank them for their help. We would refer
our readers to their review articles in the Battelle Rencontres (Penrose
(1968)), Midwest Relativity Conference Report (Geroch (1970c¢)),
Varcnna Sumamer School Proceedings (Geroch (1971)), and Pittsburgh
Conference Report (Penrose (1972b)). We have benefited from dis-
cussions and suggestions from many of our collcagues, particularly
B. Carter and D. W. Sciama. Our thanks are due to them also.

Cambridge S. W. Hawking
January 1973 G. F. R. Ellis

[xi]



2 THE ROLE OF GRAVITY

strong and weak interactions have a very short range (~ 10-13cm or
less), and although electromagnetism is a long range interaction, the
repulsion of like charges is very nearly balanced, for bodies of macro-
scopic dimensions, by the attraction of opposite charges. Gravity on
the other hand appears to be always attractive. Thus the gravitational
fields of all the particles in a body add up to produce & field which, for
sufficiently large bodies, dominates over all other forces.

Not only is gravity the dominant force on a large scale, but it is a
force which affects every particle in the same way. This universality
was first recognized by Galileo, who found that any two bodies fell
with the same velocity. This has been verified to very high precision
in more recent experiments by Eotvos, and by Dicke and his collabo-
rators (Dicke (1964)). It has also been observed that light is deflected
by gravitational fields. Since it is thought that no signals can travel
faster than light, this means that gravity determines the causal
structure of the universe, i.e. it determines which events of space-time
can be causally related to each other.

These properties of gravity lead to severe problems, for if a suffi-
ciently large amount of matter were concentrated in some region, it
could deflect light going out from the region so much that it was in fact
dragged back inwards. This was recognized in 1798 by Laplace, who
pointed out that a body of about the same density as the sun but
250 times its radius would exert such a strong gravitational field that
no light could escape from its surface. That this should have been
predicted so early is so striking that we give a translation of Laplace’s
essay in an appendix.

One can express the dragging back of light by a massive body more
precisely using Penrose’s idea of a closed trapped surface. Consider
a sphere J surrounding the body. At some instant let 7 emit a flash
of light. At some later time ¢, the ingoing and outgoing wave fronts
from .7 will form spheres .7; and .7, respectively. In a normal situa-
tion, the area of Z; will be less than that of 7 (because it represents
ingoing light) and the area of 7, will be greater than that of 7
(because it represents outgoing light; see figure 1). However if s suffi-
ciently large amount of matter is enclosed within 7, the areas of J;
and 7, will both be less than that of.7. The surface.7 is then said to
be a closed trapped surface. As ¢t increases, the area of Z, will get
smaller and smaller provided that gravity remains attractive, i.e. pro-
vided that the energy density of the matter does not become negative.
Since the matter inside J cannot travel faster than light, it will be
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trapped within a region whose boundary decreases to zero within a
finite time. This suggests that something goes badly wrong. We shall
in fact show that in such a situation a space-time singularity must
occeur, if certain reasonable conditions hold.

One can think of & singularity as a place where our present laws of
physics break down. Alternatively, one can think of it as representing
part of the edge of space-time, but a part which is at a finite distance
instead of at infinity. On this view, singularities are not so bad, but one
still has the problem of the boundary conditions. In other words, one
does not know what will come out of the singularity.

.,,

@)

O

Ficure 1. At some instant, the sphere 5 emits a flash of light. At a later time,
the light from & point p forms a sphere & around p, and the envelopes.7 | and
T ¢ form the ingoing and outgoing wavefronts respectively. If the areas of both
T, and 7, are less than the area of 7, then 7 is a closed trapped surface.

There are two situations in which we expect there to be a sufficient
concentration of matter to cause a closed trapped surface. The first is
in the gravitational collapse of stars of more than twice the mass of
the sun, which is predicted to occur when they have exhausted their
nuclear fuel. In this situation, we expect the star to collapse to a singu-
larity which is not visible to outside observers. The second situation is
that of the whole universe itself. Recent observations of the microwave
background indicate that the universe contains enough matter to
cause a time-reversed closed trapped surface. This implies the exist-
ence of a singularity in the past, at the beginning of the present epoch
of expansion of the universe. This singularity is in principle visible to
us. It might be interpreted as the beginning of the universe.
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In this book we shall study the large scale structure of space—time
on the basis of Einstein’s General Theory of Relativity. The predic-
tions of this theory are in agreement with all the experiments so far
performed. However our treatment will be sufficiently general to cover
modifications of Einstein’s theory such as the Brans-Dicke theory.

While we expect that most of our readers will have some acquain-
tance with General Relativity, we have endeavoured to write this
book so that it is self-contained apart from requiring a knowledge of
simple calculus, algebra and point set topology. We have therefore
devoted chapter 2 to differential geometry. Our treatment is reason-
ably modern in that we have formulated our definitions in & manifestly
coordinate independent manner. However for computational con-
venience we do use indices at times, and we have for the most part
avoided the use of fibre bundles. The reader with some knowledge of
differential geometry may wish to skip this chapter.

In chapter 3 a formulation of the General Theory of Relativity is
given in terms of three postulates about a mathematical model for
space-time. This model is & manifold .# with a metric g of Lorentz
signature. The physical significance of the metric is given by the first
two postulates: those of local causality and of local conservation of
energy-momentum. These postulates are common to both the General
and the Special Theories of Relativity, and so are supported by the
experimental evidence for the latter theory. The third postulate, the
field equations for the metric g, is less well experimentally established.
However most of our results will depend only on the property of the
field equations that gravity is attractive for positive matter densities.
This property is common to General Relativity and some modifications
such as the Brans-Dicke theory.

In chapter 4, we discuss the significance of curvature by considering
its effects on families of timelike and null geodesics. These represent
the paths of small particles and of light rays respectively. The curva-
ture can be interpreted as a differential or tidal force which induces
relative accelerations between neighbouring geodesics. If the energy-
momentum tensor satisfies certain positive definite conditions, this
differential force always has a net converging effect on non-rotating
families of geodesics. One can show by use of Raychaudhuri’s equation
(4.26) that this then leads to focal or conjugate points where neigh-
bouring geodesies intersect.

To see the significance of these focal points, consider a one-dimen-
sional surface & in two-dimensional Euclidean space (figure 2). Let p
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be a point not on . Then there will be some curve from % to » which
is shorter than, or as short as, any other curve from & to p. Clearly
this curve will be a geodesic, i.e. a straight line, and will intersect %
orthogonally. In the situation shown in figure 2, there are in fact three
geodesics orthogonal to & which pass through p. The geodesic through
the point 7 is clearly not the shortest curve from & to p. One way of
recognizing this (Milnor (1863)) is to notice that the neighbouring

Ficure 2. The line pr cannot be the shortest line from p to &, because there is
a focal point g between p and r. In fact either px or py will be the shortest line
from p to &.

geodesics orthogonal to % through # and v intersect the geodesic
through r at a focal point ¢ between.% and p. Then joining the segment
ug to the segment ¢p, one could obtain a curve from % to p which had
the same length as a straight lino 7p. However as ugp is not a straight
line, one could round off the corner at ¢ to obtain a curve from & to p
which was shorter than rp. This shows that 7p is not the shortest curve
from & to p. In fact the shortest curve will be either zp or yp.

One can carry these ideas over to the four-dimensional space-time
manifold .# with the Lorentz metric g. Instead of straight lines, one
considers geodesics, and instead of considering the shortest curve one
considers the longest timelike curve between a point p and a spacelike
surface & (because of the Lorentz signature of the metric, there will
be no shortest timelike curve but there may be a longest such curve).
This longest curve must be a geodesic which intersects¥ orthogonally,
and there can be no focal point of geodesics orthogonal to % between
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& and p. Similar results can be proved for null geodesics. These results
are used in chapter 8 to establish the existence of singularities under
certain conditions.

In chapter & we describe & number of exact solutions of Einstein’s
equations. These solutions are not realistic in that they all possess
exact symmetries. However they provide useful examples for the suc-
ceeding chapters and illustrate various possible behaviours. In
particular, the highly symmetrical cosmological models nearly all
possess space—time singularities. For a long time it was thought that
these singularities might be simply a result of the high degree of
symmetry, and would not be present in more realistic models. It will
be one of our main objects to show that this is not the case.

In chapter 6 we study the causal structure of space-time. In Special
Relativity, the events that a given event can be causally affected by,
or can causally affect, are the interiors of the past and future light
cones respectively (see figure 3). However in General Relativity the
metric ¢ which determines the light cones will in general vary from
point to point, and the topology of the space—time manifold .# need
not be that of Euclidean space E%. This allows many more possibilities.
For instance one can identify corresponding points on the surfaces
&, and &, in figure 3, to produce & space-time with topology K3 xSt
This would contain closed timelike curves. The existence of such a
curve would lead to causality breakdowns in that one could travel into
one’s past. We shall mostly consider only space—times which do not
permit such causality violations. In such & space-time, given any
spacelike surface &, there is & maximal region of space—time (called
the Cauchy development of &) which can be predicted from knowledge
of data on &. A Cauchy development has a property (‘Global hyper-
bolicity’) which implies that if two points in it can be joined by a time-
like curve, then there exists a longest such curve between the points.
This curve will be & geodesic.

The causal structure of space-time can be used to define a boundary
or edge to space-time, This boundary represents both infinity and the
part of the edge of space-time which is at a finite distance, i.e. the
singular points.

In chapter 7 we discuss the Cauchy problem for General Relativity.
We show that initial dats on a spacelike surface determines a unique
solution on the Cauchy development of the surface, and that in a
certain sense this solution depends continuously on the initial data.
This chapter isincluded for completeness and because it uses a number
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Future light cone
Future

[ 7

Time
Space P
Space
P Past light cone

/ /

Ficure 3. In Special Relativity, the light cone of an event p is the set of all
light rays through p. The past of p is the interior of the past light cone, and the
future of p is the interior of the future light cone.

of results of the previous chapter. However it is not necessary to read
it in order to understand the following chapters.

In chapter 8 we discuss the definition of space-time singularities.
This presentscertain difficulties because one cannot regard the singular
points as being part of the space~time manifold .

We then prove four theorems which establish the occurrence of
space—time singularities under certain conditions. These conditions
fall into three categories. First, there is the requirement that gravity
shall be attractive. This can be expressed as an inequality on the
energy—momentum tensor. Secondly, there is the requirement that
there is enough matter present in some region to prevent anything
escaping from that region. This will occur if there is & closed trapped
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surface, or if the whole universe is itself spatially closed. The third
requirement is that there should be no causality violations. However
this requirement is not necessary in one of the theorems. The basic
idea of the proofs is to use the results of chapter 6 to prove there must
be longest timelike curves between certain pairs of points. One then
shows that if there were no singularities, there would be focal points
which would imply that there were no longest curves between the pairs
of points.

We next describe a proceduresuggested by Schmidt for constructing
a boundary to space-time which represents the singular points of
space~time. This boundary may be different from that part of the
causal boundary (defined in chapter 8) which represents singularitios.

In chapter 9, wo show that the socond condition of theorem 2 of
chaptor 8 should be satisfiod noar stars of more than 1} times the solar
mass in the final stages of their evolution. The singularities which occur
are probably hidden behind an event horizon, and so are not visible
frone outehle. To an oxtorunl obrervoer, there uppoars to be a “blwck
hole’ where the star once was. We discuss the properties of such black
holes, and show that they probably settle down finally to one of the
Kerr family of solutions. Assuming this to be the case, one can place
certain upper bounds on the amount of energy which can be extracted
from black holes. In chapter 10 we show that the second conditions of
theorems 2 and 3 of chapter 8 should be satisfied, in a time-reversed
sense, in the whole universe. In this case, the singularities are in our
past and constitute a beginning for all or part of the observed universe.

The essential part of the introductory material is that in §3.1, § 3.2
and § 3.4. A reader wishing to understand the theorems predicting the
existence of singularities in the universe need read further only chap-
ter 4, §6.2-§6.7, and § 8.1 and § 8.2. The application of these theorems
to collapsing stars follows in §9.1 (which uses the results of appen-
dix B); the application to the universe as a wholeis given in § 10.1, and
relies on an understanding of the Robertson-Walker universe models
(§5.8). Our discussion of the nature of the singularities is contained
in §8.1, §8.3-§ 8.6, and § 10.2; the example of Taub-NUT space (§ 5.8)
plays an important part in this discussion, and the Bianchi I universe
model (§ 6.4) is also of some interest.

A reader wishing to follow our discussion of black holes need read
only chapter 4, §6.2-§6.6, §6.9, and §9.1, §9.2 and §9.3. This discus-
sion relies on an understanding of the Schwarzschild solution (§ 5.5)
and of the Kerr solution (§5.6).
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Finally a reader whose main interest is in the time evolution
properties of Einstein’s equations need read only §6.2-§6.6 and
chapter 7. He will find interesting examples given in §5.1, §5.2 and
§5.5.

We have endeavoured to make the index a useful guide to all the
definitions introduced, and the relations between them.



2
Differential geometry

The space—time structure discussed in the next chapter, and assumed
through the rest of this book, is that of a manifold with a Lorentz
metric and associated affine connection.

In this chapter, we introduce in § 2.1 the concept of & manifold and
in §2.2 vectors and tensors, which are the natural geometric objects
defined on the manifold. A discussion of maps of manifolds in §2.3
leads to the definitions of the induced maps of tensors, and of sub-
manifolds. The derivative of the induced maps defined by a vector
field gives the Lie derivative defined in §2.4; another differential
operation which depends only on the manifold structure is exterior
differentiation, also defined in that section. This operation occurs in
the generalized form of Stokes’ theorem.

An extra structure, the connection, is introduced in §2.5; this
defines the covariant derivative and the curvature tensor. The connec-
tion is related to the metric on the manifold in §2.6; the curvature
tensor is decomposed into the Weyl tensor and Ricci tensor, which are
related to each other by the Bianchi identities.

In the rest of the chapter, a number of other topics in differential
geometry are discussed. The induced metric and connection on a
hypersurface are discussed in §2.7, and the Gauss-Codacci relations
are derived. The volume element defined by the metric is introduced
in §2.8, and used to prove Gauss’ theorem. Finally, we give a brief
discussion in §2.9 of fibre bundles, with particular emphasis on the
tangent bundle and the bundles of linear and orthonormal frames.
These enable many of the concepts introduced earlier to be reformu-
lated in an elegant geometrical way. §2.7 and §2.9 are used only at
one or two points later, and are not essential to the main body of the
book.

[10]
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2.1 Manifolds

A manifold is essentially a space which is locally similar to Euclidean
space in that it can be covered by coordinate patches. This structure
permits differentiation to be defined, but does not distinguish intrin-
sically between different coordinate systems. Thus the only concepts
defined by the manifold structure are those which are independent of
the choice of a coordinate system. We will give a precise formulation
of the concept of a manifold, after some preliminary definitions.

Let R denote the Euclidean space of n dimensions, that is, the set
of all n-tuples (21,2% ...,2") (— o0 < 2! < c0) with the usual topology
(open and closed sets are defined in the usual way), and let $R* denote
the ‘lower half’ of B, i.e. the region of E* for which ! < 0. Amap ¢ of
an open set @ < R™ (respectively $R") to an open set @' < R™ (respec-
tively #R™) is said to be of class C7 if the coordinates (z'1,z'%,...,z"™) of
the image point ¢(p) in @' are r-times continuously differentiable
functions (the rth derivatives exist and are continuous) of the co-
ordinates (!, 2%, ...,2") of pin 0. If a map is C* for all r > 0, then it is
said to be C*. By a C°® map, we mean & continuous map.

A function f on an open set @ of R* is said to be locally Lipschitz if
for each open set < @ with compact closure, there is some constant
K such that for each pair of points p,g€%, |f(p)—f(q)| < K |p—g|,
where by |p| we mean

{ @)+ (@P(P)* +... + (™) 3.
A map ¢ will be said to be locally Lipschitz, denoted by C-, if the
coordinates of ¢(p) are locally Lipschitz functions of the coordinates
of p. Similarly, we shall say that a map ¢ is Cr~ if it is C*1 and if the
(r— 1)th derivatives of the coordinates of ¢(p) are locally Lipschitz
functions of the coordinates of p. In the following we shall usually only
mention Cr, but similar definitions and results hold for Cr—.

If #is an arbitrary set in R™ (respectively $R*), a map ¢ from 2 to
8 set ' < R™ (respectively $R™) is said to be a Cr map if ¢ is the
restriction to & and £’ of a C" map from an open set 0 containing &
to an open set @' containing &'.

A Cr n-dimensional manifold A is a set A together with a C* atlas
{#,, ¢.}, that is to say a collection of charts (%,, ¢,) where the %, are
subsets of A4 and the ¢, are one—one maps of the corresponding %, to
open sets in E” such that

(1) the %, cover #,i.e. # =U%,,

«
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(2) if %, n % is non-empty, then the map
o 0Pt Pp(U, N Ug) > Dol U N Uy)

is & Cr map of an open subset of E" to an open subset of B" (see figure 4).

Each %, is a local coordinate neighbourhood with the local coordinates
22 (@ = 1ton)defined by the map ¢, (i.e. if p €%, then the coordinates
of p are the coordinates of ¢_(p) in B*). Condition (2) is the requirement
that in the overlap of two local coordinate neighbourhoods, the
coordinates in one neighbourhood are C functions of the coordinates
in the other neighbourhood, and vice versa.

Rn
” j $al¥a 0 Ug)

F1oURE 4. In the overlap of coordinate neighbourhoods %, and %, coordinates
are related by a Cr map ¢, 0,72

Another atlas is said to be compatible with a given Cr atlas if their
union is & Cr atlas for all .#. The atlas consisting of all atlases com-
patible with the given atlas is called the complete atlas of the manifold;
the complete atlas is therefore the set of all possible coordinate
systems covering .#.

The topology of A is defined by stating that the open sets of 4
consist of unions of sets of the form %, belonging to the complete atlas.
This topology makes each map ¢, into a homeomorphism.

A Cr differentiable manifold with boundary is defined as above, on
replacing ‘ B*’ by ‘4R"’. Then the boundary of .#, denoted by 0.4, is
defined to be the set of all points of 4 whose image under a map ¢, lies
on the boundary of $E™in R™. 2.4 is an (n — 1)-dimensional Cr manifold
without boundary.
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These definitions may seem more complicated than necessary. How-
ever simple examples show that one will in general need more than one
coordinate neighbourhood to describe a space. The two-dimensional
Euclidean plane R? is clearly a manifold. Rectangular coordinates
(x, ¥y; —0<x <00, —00 <y < o) cover the whole plane in one
coordinate neighbourhood, where ¢ is the identity. Polar coordinates
(r,0) cover the coordinate neighbourhood (r > 0, 0 < 6 < 2m); one
needs at least two such coordinate neighbourhoods to cover R2 The
two-dimensional cylinder C?is the manifold obtained from R? by identi-
fying the points (z,y) and (z+ 2m,y). Then (z,y) are coordinates in
a neighbourhood (0 < =z < 277, —00 < y < o0) and one needs two
such coordinate neighbourhoods to cover C%. The Mdbius strip is the
manifold obtained in a similar way on identifying the points (z,y) and
(z+ 271, —y). The unit two-sphere S% can be characterized as the surface
in R® defined by the equation (z)2+ (22)2+ (2%)* = 1. Then

(2,23 —1<a? <1, -1 <2®<1)

are coordinates in each of the regions 2! > 0, 2! < 0, and one needs six
such coordinate neighbourhoods to cover the surface. In fact, it is not
possible to cover S? by a single coordinate neighbourhood. The
n-sphere 8™ can be similarly defined as the set of points

(xl)z + (xz)z +...4 (xn+1)2 =1
in Rn+1,

A manifold is said to be orientable if there is an atlas {%,, ¢,} in the
complete atlas such that in every non-empty intersection %, n %;, the
Jacobian |9z%/9z'l| is positive, where (z,...,2") and (z%,...,2'") are
coordinates in %, and %, respectively. The Mobius strip is an example
of a non-orientable manifold.

The definition of a manifold given so far is very general. For most
purposes one will impose two further conditions, that .# is Hausdorff
and that .# is paracompact, which will ensure reasonable local

" behaviour.

A topological space . is said to be a Hausdorff space if it satisfies
the Hausdorff separation axiom: whenever p, g are two distinct points
in ., there exist disjoint open sets %, ¥ in .4 such that pe%, ge¥".
One might think that a manifold is necessarily Hausdorff, but this is
not so. Consider, for example, the situation in figure 5. We identify the
points &, b’ on the two lines if and only if 2, = g, < 0. Then each point
is contained in a (coordinate) neighbourhood homeomorphic to an
open subset of E1. However there are no disjoint open neighbourhoods
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b
—— * >y
v =) y=0
F1GURE 5. An example of a non-Hausdorff manifold. The two lines above are

identical for x = y < 0. However the two points a (x = 0) and &’ (y = 0) are
not identified.

%,V satisfying the conditions a € %, a’ € ¥”, where a is the point z = 0
and a’ is the point y = 0.

An atlas {%,, ¢,} is said to be locally finite if every point p € . has
an open neighbourhood which intersects only a finite number of the
sets %,. A is said to be paracompact if for every atlas {#,, ¢,} there
exists a locally finite atlas {¥}, {4} with each ¥}, contained in some %Z,.
A connected Hausdorff manifold is paracompact if and only if it has
a countable basis, i.e. there is a countable collection of open sets such
that any open set can be expressed as the union of members of this
collection (Kobayashi and Nomizu (1963), p. 271).

Unless otherwise stated, all manifolds considered will be paracompact,
connected C° Hausdorff manifolds without boundary. It will turn out
later that when we have imposed some additional structure on 4 (the
existence of an affine connection, see §2.4) the requirement of para-
compactness will be automatically satisfied because of the other
restrictions.

A function f on a C* manifold . is a map from 4 to Rl. It is said to
be of class CT (r < k) at a point p of #, if the expression fo ¢, 1 of f on
any local coordinate neighbourhood %, is a C function of the local
coordinates at p; and f is said to be a C" function on a set ¥~ of 4 if
fis a Cr function at each point pe¥".

A property of paracompact manifolds we will use later, is the fol-
lowing: given any locally finite atlas {#,, .} on a paracompact C*
manifold, one can always (sce c.g. Kobayashi and Nomizu (1963),
p- 272) find a set of C* functions g, such that

(1) 0 <g, < 1on .« foreacha;

(2) the support of g,, i.e. the closure of the set {pe #: g.(p) + 0}, is
contained in the corresponding %,;

(3) X g.(p) =1, forall pe A.
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Such a set of functions will be called a partition of unity. The result
isin particular true for C* functions, but is clearly not true for analytic
functions (an analytic function can be expressed as a convergent
power series in some neighbourhood of each point p € #, and so is zero
everywhere if it is zero on any open neighbourhood).

Finally, the Cartesian product o x # of manifolds &7, # is a mani-
fold with a natural structure defined by the manifold structures of
&, &: for arbitrary points p € &, g€ %, there exist coordinate neigh-
bourhoods %, ¥ containing p, g respectively, so the point (p, ) e & x#
is contained in the coordinate neighbourhood % x ¥ in & x & which
assigns to it the coordinates (x%,%7), where 2* are the coordinates of p
in % and ¢ are the coordinates of g in ¥".

2.2 Vectors and tensors

Tensor fields are the set of geometric objects on a manifold defined in
a natural way by the manifold structure. A tensor field is equivalent
to a tensor defined at each point of the manifold, so we first define
tensors at a point of the manifold, starting from the basic concept of
a vector at a point.

A C* curve A(t) in A is a C* map of an interval of the real line Rlinto
A . The vector (contravariant vector) (9/dt),|,, tangent to the C* curve
A(t) at the point A(t,) is the operator which maps each C* function f at
A(t,) into the number (2f/2t),|,,; that is, (9f/2t), is the derivative of fin
the direction of A(t) with respect to the parameter ¢. Explicitly,

0
(5{“' = lim ~{AC+a)—FAN)- (2.1)

The curve parameter ¢ clearly obeys the relation (0/ét),t = 1.
If (21, ...,2") are local coordinates in a neighbourhood of p,

(gf) _nadoe)| | _def of
ot) i, =1 At [y, gy Al Ay

(Here and throughout this book, we adopt the summation convention
whereby a repeated index implies summation over all values of that
index.) Thus every tangent vector at a point » can be expressed as
a linear combination of the coordinate derivatives

(2/0x)| s .-, (8] 02™)| .
Conversely, given a linear combination V#(9/227)],, of these operators,
where the V7 are any numbers, consider the curve A(t) defined by
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2H(A(t)) = 2(p) +tV7, for t in some interval [ ¢, €]; the tangent vector
to this curve at p is V#(9/éx’)],,. Thus the tangent vectors at p form
a vector space over R! spanned by the coordinate derivatives (9/2z7)|,,
where the vector space structure is defined by the relation

@X +BY)f = «(Xf)+B(YS)

which is to hold for all vectors X, Y, numbers «, £ and functions f.
The vectors (2/2zf), are independent (for if they were not, there
would exist numbers V7 such that V#(9/d27)|,, = 0 with at least one V?
non-zero; applying this relation to each coordinate a* shows

Vioakjoa? = Vk =0,

a contradiction), so the space of all tangent veetors to A ut p, denoted
by 7,,(#) or simply 7,,, is an z-dimensional vector space. This space,
representing the set of all directions at p, is called the tangent vector
space to A at p. One may think of a vector Ve 7, as an arrow at p,
pointing in the direction of a curve A(t) with tangent vector V at p,
the ‘length’ of V being determined by the curve parameter ¢ through
the relation V() = 1. (As V is an operator, we print it in bold type;
its components V7, and the number V(f) obtained by V acting on a
function f, are numbers, and so are printed initalics.)

If {E,} (a = 1 ton) are any set of n vectors at p which are linearly
independent, then any vector Ve 7, can be written V = VeE_ where
the numbers {V*} are the components of V with respect to the basis
{E,} of vectors at p. In particular one can choose the E, as the coordi-
nate basis (9/22%)|,,; then the components V* = V(xf) = (dz%/dt)], are
the derivatives of the coordinate functions z* in the direction V.

A one-form (covariant vector) w at p is a real valued linear function
on the space 7, of vectors at p. If X is a vector at p, the number into
which w maps X will be written (w, X); then the linearity implies that

(w,aX + YY) = a{w, X)+ f{w,Y)

holds for all &, fe R* and X,YELI;. The subspace of 7, defined by
{w, X} = (constant) for a given one-form w, is linear. One may there-
fore think of a one-form at p as a pair of planes in 7, such that if
(w,X) = 0 the arrow X lies in the first plane, and if (w,X) =1 it
touches the second plane.

Given a basis {E,} of vectors at p, one can define a unique set of
n one-forms {E°} by the condition: E! maps any vector X to the
number X* (the ith component, of X with respect to the basis {E,}).
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Then in particular, (E® E;) = 6%,. Defining linear combinations of
one-forms by the rules
(@ + n, X = (e, Xy + (0, X

for any one-forms w,  and any a, fe R, X €7, one can regard {E%}
as a basis of one-forms since any one-form « at  can be expressed as
w = w; E* where the numbers w, are defined by w; = (w, E;). Thus the
set of all one forms at p forms an n-dimensional vector space at p, the
dual space T*,, of the tangent space 7},. The basis {E%} of one-forms is
the dual basis to the basis {E_} of vectors. For any we7'*,, X7, one
can express the number {w, X} in terms of the components w;, X* of
w, X with respect to dual bases {E9}, {E,} by the relations

(0, X) = (w,E, XIE) — e, X'
Each fnaction f on 4 defines a one-form df at » by the rule: for
each vector X, @f, Xy = Xf.
dfis called the differential of f. If (2, ..., 2") are local coordinates, the

set of differentials (d21, d«? ...,dz") at p form the basis of one-forms
dual to the basis (9/0z!, 9[ox?, ..., [oxm) of vectors at p, since
(dzt, 8/oa?y = oxt[oxt = 8%,

In terms of this basis, the differential df of an arbitrary function f is
given by af = (of /o) dxt.
If df is non-zero, the surfaces {f = constant} are (n — 1)-dimensional
manifolds. The subspace of 7, consisting of all vectors X such that
{df,X) = 0 consists of all vectors tangent to curves lying in the
surface {f = constant} through p. Thus one may think of df as a
normal to the surface {f = constant} at p. If & & 0, adf will also be
a normal to this surface.

From the space 7, of vectors at p and the space 7'*, of one-forms
at p, we can form the Cartesian product

8 . Mk * *
0§ =7*,xT px...xTJpr&prx...pr,

r factors s factors

i.e. the ordered set of vectors and one-forms (n%,...,%",Y,,...,Y,)
where the Ys and ns are arbitrary vectors and one-forms respectively.

A tensor of type (r, 8) at p is a function on I which is linear in each
argument. If T is a tensor of type (7, s) at p, we write the number into
which T maps the element (v}, ...,0",Y,,...,Y,) of [12 as

T, ..om, Yy, .., Y).
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Then the linearity implies that, for example,
T, ..., eX+ Y, Y,, ..., Y,) =a. T, ...n" X Y,,...,Y,)

+8.7(Y ..., Y, Y,, ..., Y,)
holds for all &, fe R and X, Y e T},
The space of all such tensors is called the tensor product

Tip) = 1,8...070, @ T*,®...T*,.
r factors s factors
In particular, T}(p) = 7, and T'Y(p) = T'*,.
Addition of tensors of type (r, s) is defined by the rule: (T +T") is the
tensor of type (r,s) at p such that for all Y, &7, n/ e T*,,
@+, ..o, Y, o, Y) =T .05 Yy, 0, YY)
+T"mY, ..., Yy, .., Y,)

Similarly, multiplication of a tensor by a scalar o€ R! is defined by the
rule: (¢T) is the tensor such that for all Y,e7,, n/eT*,,

(aT) (nly ---,"l', Y]_’ --"Ys) = a'T(nlr ""nr:er "',Ys)'

With these rules of addition and scalar multiplication, the tensor
product T%(p) is a vector space of dimension n™* over R

Let X;e7, (i =1 to r) and w/eT*,(j=1 to s). Then we shall
denote by X; ® ... ® X, ® 0! ® ... ® w?* that element of 7"(p) which
maps the element (n?,...,9", Y,,...,Y,) of IT¢ into

ML XD 5 X) - (0, XD (0l Yo (0, Y).

Similarly, if Re T(p) and S € T%(p), we shall denote by R ® S that
element of 7'315(p) which maps the element (n!,...,n*",Y;,..., Y, )
of 1842 into the number

ROty o, Yo, o, V) S, ™9, Y, o, Y, ).

With the product ®, the tensor spaces at p form an algebra

over R.
If {E,}, {E°} are dual bases of 7},, T*, respectively, then

{Ee, ®..QE, ®E"®... E¥}, (a;b;runfrom 1ton),

will be a basis for 7%(p). An arbitrary tensor T e T,’,‘(p) can be expressed
in terms of this basis as

T =742, . ,E, ®..0FE, QE"®..E»
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where {719, , } are the components of T with respect to the dual
bases {E,}, {E%} and are given by

Torvetey 4 =T(ES, . E7E,,.. E,).

Relations in the tensor algebra at p can be expressed in terms of the
components of tensors. Thus

(T+Tl)a1-.-arbl-“br = Tal...a,blmb'_’_Tialn_arb

1-.2 bg?
(aT)al'"a'bl...b, =a. Talma'bl...b,l
(T QT )ywramy, p,,, = Ty, o T'Oorrtrimy |\ b,
Because of its convenience, we shall usually represent tensor relations
in this way.
If {E,} and {E“} are another pair of dual bases for 7}, and 7'*,, they
can be represented in terms of {E,} and {E°} by

E, = 0,°E, (2.2)
where @,¢ is an 7 x n non-singular matrix. Similarly
E¢ = @« E° (2.3)

where @7, is another » x » non-singular matrix. Since {E,}, {E®} are
dual bases,

8V, = (BY,E_) = (O, B, O °E) = O 0¥, 8,0 = O oD,

ie. @2, @7, are inverse matrices, and 6%, = 9%, d¥,.
The components 7'¢1+9%, . of a tensor T with respect to the
dual bases {E,}, {E“} are given by

Tardr, . = T(E%, ..., B9, Ey,,...,Ey).

They are related to the components 7%, ., of T with respect to
the bases {E,}, {E®} by

'3 eee @ = e /', ’ b b,
Tal arb’l-..b’; = Ta1 arb]..-b‘ Qa lal cen @arar Qb'l 1... @bv’ s. (2.4)

The contraction of a tensor T of type (r,s), with components
Tab--4,,  , with respect to bases {E}, {E%}, on the first contravariant
and first covariant indices is defined to be the tensor C}(T) of type
(r—1,8—1) whose components with respect to the same basis are

Tabmdaf...ﬂ’ ie.

CYT) =T34, E,Q®..QE;QE/®...QE".
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If {E_}, {E*} are another pair of dual bases, the contraction C}(T)
defined by them is

CYT) = T4, Ey®..RE;QE/'®... FE
= O, By, THVd Db D00, D0,
E®..QE,QFE.. QFE
=fa-¢ EQ..QE,QE®..®E =C}T),

so the contraction C} of a tensor is independent of the basis used in its
definition. Similarly, one could contract T over any pair of contra-
variant and covariant indices. (If we were to contract over two contra-
variant or covariant indices, the resultant tensor would depend on the

basis used.)

The symmetric part of a tensor T of type (2, 0) is the tensor S(T)
defined by 1
S(T) (n1,m2) = 5; {T(2,m) + T )}

for all ;,m,€ 7*,,. We shall denote the components S(T)? of S(T) by
T, then 1
THab) — E_'_ {Tab + Tba}_

Similarly, the components of the skew-symmetric part of T will be

denoted by ;
_;lvlubl — _2__' {_Illub - _llvlm}_

In general, the components of the symmetric or antisymmetric part of
a tensor on a given set of covariant or contravariant indices will be
denoted by placing round or square brackets around the indices. Thus

T(a,... a,)b"' 4

1 < s
=5 {sum over all permutations of the indices a, to a,(7,, _,°%/)}
and
T(al... ar]b"- !

1 .
=5 {alternating sum over all permutations of the indices
' a, to a, (7, .0, )}

For example,

Koeqy = ${E %ca+ Kqpe+ K% gy — K% — K%pq~ K%}
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A tensor is symmelric in a given set of contravariant or covariant
indices if it is equal to its symmetrized part on these indices, and is
antisymmetric if it is equal to its antisymmetrized part. Thus, for
example, a tensor T of type (0, 2) is symmetric if 7}, = (7%, + T4a)s
(which we can also express in the form: 7, = 0).

A particularly important subset of tensors is the set of tensors of
type (0, ¢) which are antisymmetric on all ¢ positions (so ¢ < n); such
a tensor is called a g-form. If A and B are p- and ¢-forms respectively,
one can define a (p+¢g)-form A A B from them, where A is the skew-
symmetrized tensor product ®; that is, A A B is the tensor of type
(0, »+¢q) with components determined by

(A A B)a...bc...f = A[a...bBc...f]'

This rule implies (A A B) = (—)?¢(B A A). With this product, the
space of forms (i.e. the space of all p-forms for all p, including one-
forms and defining scalars as zero-forms) constitutes the Grassmann
algebra of forms. If {E% is a basis of one-forms, then the forms
E% A ... AE% (@, run from 1 to ») are a basis of p-forms, as any p-form
A can be written A = 4, ,E®A... AE% where 4, , = 4, -

So far, we have considered the set of tensors defined at a point on
the manifold. A set of local coordinates {zf} on an open set % in #
defines a basis {(9/2x%)|,,} of vectors and a basis {(dzf)|,} of one-forms
at each point p of %, and so defines a basis of tensors of type (7, s) at
onch point. of . Such n basis of tensors will be enlled a coordinnto
basis. A C tensor field T of type (r, s) on a set ¥~ < .4 is an assignment
of an element of 7%(p) to each point pe?¥” such that the components
of T with respect to any coordinate basis defined on an open subset
of ¥~ are C* functions.

In general one need not use a coordinate basis of tensors, i.e. given
any basis of vectors {E,} and dual basis of forms {E%} on ¥, there will
not, necessarily exist any open set in ¥~ on which there are local
coordinates {z¢} such that E_, = 2/9z® and E® = da¢. However if one
does use a coordinate basis, certain specializations will result; in parti-
cular for any function f, the relations E (E,f) = E,(E,f) are satisfied,
being equivalent to the relations 22f/ox®dx® = &%f/oa®0z®. If one
changes from a coordinate basis E, = 9/2x® to a coordinate basis
E, = 9[22, applying (2.2), (2.8) to z¢, x* shows that

oz .0

O e = —
Ot =g = gm

Clearly a general basis {E,} can be obtained from a coordinate basis
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{8/} by giving the functions E * which are the components of the E,
with respect to the basis {9/0z%}; then (2.2) takes the form E, = E *9[0x*
and (2.3) takes the form E¢ = E%,dxt, where the matrix E¢; is dual to
the matrix E .

2.3 Maps of manifolds

In this section we define, via the general concept of a C*¥ manifold map,
the concepts of ‘imbedding’, ‘immersion’, and of associated tensor
maps, the first two being useful later in the study of submanifolds, and
the last playing an important role in studying the behaviour of
families of curves as well as in studying symmetry properties of
manifolds.

A map ¢ from a C* n-dimensional manifold 4 to a C* »’-dimensional
manifold 4’ is said to be a C" map (r < k, r < ¥') if, for any local
coordinate systems in .# and .#’, the coordinates of the image point
&(p) in A" are Cr functions of the coordinates of p in 4. As the map
will in general be many-one rather than one-one (e.g. it cannot be
one-one if n > n'), it will in general not have an inverse; and if a C*
map does have an inverse, this inverse will in general not be C* (e.g.
if ¢ is the map R!-» R! given by x-» 3, then ¢! is not differentiable at
the point 2 = 0).

Iffis a function on .#”, the mapping ¢ defines the function ¢*fon .4
as the function whose value at the point p of # is the value of f at

#p), Le. ¢*f(p) = f(3(P)). (2.5)
Thus when ¢ maps points from .# to .4’, ¢* maps functions linearly
from A" to A.

If A(t) is a curve through the point pe.#, then the image curve
#(A()) in A’ passes through the point ¢(p). If r 2 1, the tangent
vector to this curve at ¢(p) will be denoted by ¢, (2/2t);|44»; one can
regard it as the image, under the map ¢, of the vector (9/2t),|,.. Clearly
&« is a linear map of 7,,(#) into Ty, (#’). From (2.5) and the defini-
tion (2.1) of a vector as a directional derivative, the vector map ¢,
can be characterized by the relation: for each Cr (r > 1) function f at
é(p) and vector X at p,

X(6*)p = S+ X ()] - (2.6)

Using the vector mapping ¢, from . to .#', we can if r > 1 define

a linear one-form mapping ¢* from 7'*y,(A#") to T*,(#) by the
condition: vector-one-form contractions are to be preserved under the
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maps. Then the one-form AeT*y,, is mapped into the one-form
¢*A eT*, where, for arbitrary vectors X €7},

<¢ *A’ X){p = <Av ¢* X)“(p)'
A consequence of this is that
$*(df) = d(*f). (2.7)

The maps ¢, and ¢* can be extended to maps of contravariant
tensors from .4 to .#' and covariant tensors from .4’ to .# respec-
tively, by the rules ¢,: TeT§(p)> ¢ TeTHPH(p)) where for any

nte T* g4, T(S%1,s s ™)y = B T ") g
and o*: TeTy((p))»¢*TeTi(p),
where for any X;e T}

O*T(Xy, - Xy = T(Da Xy, ooes D2 Xo)] g

When 7 > 1, the C” map ¢ from A to A" is said to be of rank s at p
if tho dimension of ¢ 4(7),(#)) is s. It is said to be injeclive at pif s = n
(and so n < »’) at p; then no vector in 7}, is mapped to zero by ¢,. It
is said to be surjective if s=n" (son > n )

A C" map ¢ (r > 0) is said to be an immersion if it and its inverse
are Cr maps, i.e. if for each point pe.# there is a neighbourhood
% of p in A such that the inverse ¢! restricted to ¢(%) is also
n 7 map. Thir implirs n < n’. By the implicit function theorem
(Spivak (1965), p. 41), whenr > 1 , ¢ will be an immersion if and only if
it is injective at every point pe.#; then ¢, is an isomorphism of 7},
into the image ¢.(7},) < Ty, The image @(A) is then said to be an
n-dimensional immersed submanifold in #’. This submanifold may
intersect itself, i.e. ¢ may not be a one-one map from A to ¢(#)
although it is one—one when restricted to asufficiently smallneighbour-
hood of 4. An immersion is said to be an imbedding if it is a homeo-
morphism onto its image in the induced topology. Thus an imbedding
is a one-one immersion ; however not all one-one immersions are
imbeddings, cf. figure 6. A map ¢ is said to be a proper map if the
inverse image ¢—1(X") of any compact set ¥ < .#” is compact. It can
be shown that a proper one-one immersion is an imbedding. The
image ¢(.#) of A under an imbedding ¢ is said to be an n-dimensional
imbedded submanifold of A’.

The map ¢ from A to A’ is said to be a Cr dz_ﬁ"eomorphwm if it is
a one—one CT map and the inverse ¢! is a Cr map from .4’ to 4. In






